91 research outputs found

    Synthesis of diverse glycosylphosphatidylinositol glycans from toxoplasma gondii and their application as vaccines and diagnostics

    No full text
    The present invention relates to the synthesis of GPI-related surface antigens of the parasite Toxoplasma gondii (T. gondii) and the resulting products obtained. These synthetic compounds are suitable for diagnosis of toxoplasmosis, as well as vaccine against toxoplasmosis, a diseases caused by infection with T. gondii

    Synthetic phosphoethanolamine-modified oligosaccharides reveal the importance of glycan length and substitution in biofilm-inspired assemblies

    Get PDF
    Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials

    Utilisation du limonène comme synthon agrochimique pour la synthèse et l'extraction de produits naturels

    Get PDF
    The objective of this study was to transform limonene as an agro-chemical platform for the production of a wide range of added-value compounds for pharmaceutical, cosmetic and food ingredients. This molecule was also evaluated as an alternative solvent for the extraction of several bioactive compounds compared to n-hexane. Limonene was extracted from the essential oils of orange peels through a solvent-free microwave extraction technique. Limonene was successfully transformed into products with industrial interest by catalytic oxidation using three different iron catalysts. The ability of limonene to be used as an alternative solvent was performed using two simulation tools, Hansen solubility parameters (HSPs) and the Conductor-like Screening Model for Real Solvents (COSMO-RS), and via experimentation. The results indicated that limonene could be a promising green solvent and synthon for petroleum substitution in the extraction or synthesis of bioactive compounds.L'objectif de cette étude est de montrer les potentialités du limonène comme une plateforme agrochimique pour la production d'une large gamme de composés à valeur ajoutée pour les industries pharmaceutique, cosmétique et agroalimentaire. Cette molécule a été évaluée en tant que synthon pour la synthèse de molécules bioactives et comme solvant alternatif à l'hexane pour l'extraction de composés bioactifs. Deux outils de simulation solvant--soluté ont été utilisés pour simuler et optimiser les potentialités du limonène : les paramètres de solubilité Hansen (HSP) et le modèle « Conductor-like Screening Model for Real Solvents » (COSMO-RS). Les résultats indiquent que le limonène peut être un solvant vert et un synthon prometteur pour la substitution du pétrole dans l'extraction ou la synthèse de composés bioactifs.This work was supported in part thanks to funding from the fellowship given to Edinson Yara Varón (No. TECSPR14-2-0029) from the People Programme (Marie Curie Actions) of the Seventh Framework Programme of the European Union (FP7/2007-2013) under REA grant agreement no. 600388 (TECNIOspring programme), and from the Agency for Business Competitiveness of the Government of Catalonia, ACCIÓ

    Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products

    Get PDF
    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.Edinson Yara Varón thanks to fellowship funding (No. TECSPR14-2-0029) from the People Programme (Marie Curie Actions) of the Seventh Framework Programme of the European Union (FP7/2007-2013) under REA grant agreement No. 600388 (TECNIOspring programme), and from the Agency for Business Competitiveness of the Government of Catalonia, ACCIÓ. Ying Li would like to thank the National Natural Science Foundation of China (Grant 31701633) and the Fundamental Research Funds for the Central Universities (Grant 17817028), as well as special funds from “SanWu Talent 2014” and sixth “100-Talent” Programs

    Coherence length of an elongated condensate: a study by matter-wave interferometry

    Full text link
    We measure the spatial correlation function of Bose-Einstein condensates in the cross-over region between phase-coherent and strongly phase-fluctuating condensates. We observe the continuous path from a gaussian-like shape to an exponential-like shape characteristic of one-dimensional phase-fluctuations. The width of the spatial correlation function as a function of the temperature shows that the condensate coherence length undergoes no sharp transition between these two regimes.Comment: 8 pages, 6 figure, submitted to EPJ

    Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle

    Full text link
    We present a detailed analysis of the 1D expansion of a coherent interacting matterwave (a Bose-Einstein condensate) in the presence of disorder. A 1D random potential is created via laser speckle patterns. It is carefully calibrated and the self-averaging properties of our experimental system are discussed. We observe the suppression of the transport of the BEC in the random potential. We discuss the scenario of disorder-induced trapping taking into account the radial extension in our experimental 3D BEC and we compare our experimental results with the theoretical predictions

    Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein

    Get PDF
    The physiological functions of PrP(C) remain enigmatic, but the central domain, comprising highly conserved regions of the protein may play an important role. Indeed, a large number of studies indicate that synthetic peptides containing residues 106-126 (CR) located in the central domain (CD, 95-133) of PrP(C) are neurotoxic. The central domain comprises two chemically distinct subdomains, the charge cluster (CC, 95-110) and a hydrophobic region (HR, 112-133). The aim of the present study was to establish the individual cytotoxicity of CC, HR and CD. Our results show that only the CD peptide is neurotoxic. Biochemical, Transmission Electron Microscopy and Atomic Force Microscopy experiments demonstrated that the CD peptide is able to activate caspase-3 and disrupt the cell membrane, leading to cell death

    “Magnetic Force Microscopy and Energy Loss Imaging of Superparamagnetic Iron Oxide Nanoparticles”

    Get PDF
    We present quantitative, high spatially resolved magnetic force microscopy imaging of samples based on 11 nm diameter superparamagnetic iron oxide nanoparticles in air at room temperature. By a proper combination of the cantilever resonance frequency shift, oscillation amplitude and phase lag we obtain the tip-sample interaction maps in terms of force gradient and energy dissipation. These physical quantities are evaluated in the frame of a tip-particle magnetic interaction model also including the tip oscillation amplitude. Magnetic nanoparticles are characterized both in bare form, after deposition on a flat substrate, and as magnetically assembled fillers in a polymer matrix, in the form of nanowires. The latter approach makes it possible to reveal the magnetic texture in a composite sample independently of the surface topography

    The role of dipole interactions in hyperthermia heating colloidal clusters of densely-packed superparamagnetic nanoparticles

    Get PDF
    This work aims to investigate the influence of inter-particle dipole interactions on hyperthermia heating colloidal clusters of densely-packed Fe3O4 nanoparticles at low field intensity. Emulsion droplet solvent evaporation method was used to assemble oleic acid modified Fe3O4 particles into compact clusters which were stabilized by surfactant in water. Both experimental and simulation works were conducted to study their heating performance at different cluster’s sizes. The dipole interactions improve the heating only when the clusters are small enough to bring an enhancement in clusters’ shape anisotropy. The shape anisotropy is reduced at greater clusters’ sizes, since the shapes of the clusters become more and more spherical. Consequently, the dipole interactions change to impair the heating efficiency at larger sizes. When the clusters are totally isotropic in shape, the heating efficiency is lower than that of non-interacting particles despite the cluster’s size, although the efficiency increases by a little bit at a particular size most likely due to the dipole couplings. In these situations, one has to use particles with higher magnetic anisotropy and/or saturation magnetization to improve the heating

    COBRA Master Class: Providing deep-sea expedition leadership training to accelerate early career advancement

    Get PDF
    Leading deep-sea research expeditions requires a breadth of training and experience, and the opportunities for Early Career Researchers (ECRs) to obtain focused mentorship on expedition leadership are scarce. To address the need for leadership training in deep-sea expeditionary science, the Crustal Ocean Biosphere Research Accelerator (COBRA) launched a 14-week virtual Master Class with both synchronous and asynchronous components to empower students with the skills and tools to successfully design, propose, and execute deep-sea oceanographic field research. The Master Class offered customized and distributed training approaches and created an open-access syllabus with resources, including reading material, lectures, and on-line resources freely-available on the Master Class website (cobra.pubpub.org). All students were Early Career Researchers (ECRs, defined here as advanced graduate students, postdoctoral scientists, early career faculty, or individuals with substantial industry, government, or NGO experience) and designated throughout as COBRA Fellows. Fellows engaged in topics related to choosing the appropriate deep-sea research asset for their Capstone “dream cruise” project, learning about funding sources and how to tailor proposals to meet those source requirements, and working through an essential checklist of pre-expedition planning and operations. The Master Class covered leading an expedition at sea, at-sea operations, and ship-board etiquette, and the strengths and challenges of telepresence. It also included post-expedition training on data management strategies and report preparation and outputs. Throughout the Master Class, Fellows also discussed education and outreach, international ocean law and policy, and the importance and challenges of team science. Fellows further learned about how to develop concepts respectfully with regard to geographic and cultural considerations of their intended study sites. An assessment of initial outcomes from the first iteration of the COBRA Master Class reinforces the need for such training and shows great promise with one-quarter of the Fellows having submitted a research proposal to national funding agencies within six months of the end of the class. As deep-sea research continues to accelerate in scope and speed, providing equitable access to expedition training is a top priority to enable the next generation of deep-sea science leadership
    • …
    corecore