90 research outputs found

    First-level trigger systems for LHC experiments

    Get PDF
    We propose to carry out a broad-based programme of R&D on level-1 trigger systems for LHC experiments. We will consider the overall level-1 which coordinates different subtriggers and which interacts with the front end electronics and with the level-2 system. Careful attention will be paid to systems aspects and problems of synchronization within the pipelined processor system. Trigger algorithms for selecting events with high-pt electrons, photons, muons, jets and large missing Et will be evaluated by physics simulation studies. We will study possible implementations of such trigger algorithms in fast electronics by making conceptual design studies and using behavioural simulation models. For critical areas more detailed design studies will be made, and prototypes of some key elements will be constructed and tested. The proposed R&D project builds on existing studies and will complement other R&D projects already funded by the DRDC

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    A CAMAC interface for Tektronix waveform digitizers

    No full text
    A CAMAC module has been designed, as a result of collaboration with Tektronix, to interface the Digital Processing Oscilloscope (DPO) and the Transient Digitizer (R7912) to the CAMAC Dataway. (1 refs)

    A computer controlled test system for MWPC electronics

    No full text
    A system has been built to perform the semi-automatic testing of 3c 10 000 channels (amplifiers and their associated logic circuits) to be used for MWPC read-out. The linear charcateristics and the logic functions for each channel are checked using a computer with a CAMAC interface, a number of standard CAMAC and NIM modules, and a few specifically designed units
    corecore