8 research outputs found

    Abstracts from the 11th Symposium on Experimental Rhinology and Immunology of the Nose (SERIN 2017)

    Get PDF

    Predominance of rhinovirus in the nose of symptomatic and asymptomatic infants

    No full text
    Respiratory infections in infancy may protect against developing Th2-mediated allergic disease (hygiene hypothesis). To estimate the relative contribution of particular viruses to the development of the immune system and allergic disease, we investigated longitudinally the prevalence of respiratory viral infections in infants. One hundred and twenty-six healthy infants were included in this prospective birth cohort study in their first year of life. Physical examination was performed and nasal brush samples were taken during routine visits every 6 months and during an upper respiratory tract infection (URTI) (sick visits). The prevalence of respiratory viral infections in infants with URTI, infants with rhinitis without general malaise and infants without nasal symptoms was studied. Rhinovirus was the most prevalent pathogen during URTI and rhinitis in 0- to 2-year-old infants (similar to40%). During URTI, also respiratory syncytial virus (similar to20%) and coronavirus (similar to10%) infections were found, which were rarely detected in infants with rhinitis. Surprisingly, in 20% of infants who did not present with nasal symptoms, rhinovirus infections were also detected. During routine visits at 12 months, a higher prevalence of rhinovirus infections was found in infants who attended day-care compared with those who did not. We did not observe a relation between breast-feeding or smoking by one or both parents and the prevalence of rhinovirus infections. The parental history of atopy was not related to the prevalence of rhinovirus infection, indicating that the genetic risk of allergic disease does not seem to increase the chance of rhinovirus infections. In conclusion, rhinovirus infection is the most prevalent respiratory viral infection in infants. It may therefore affect the maturation of the immune system and the development of allergic disease considerabl

    The burden of severe asthma in childhood and adolescence: results from the paediatric U-BIOPRED cohorts

    No full text
    U-BIOPRED aims to characterise paediatric and adult severe asthma using conventional and innovative systems biology approaches. A total of 99 school-age children with severe asthma and 81 preschoolers with severe wheeze were compared with 49 school-age children with mild/moderate asthma and 53 preschoolers with mild/moderate wheeze in a cross-sectional study. Despite high-dose treatment, the severe cohorts had more severe exacerbations compared with the mild/moderate ones (annual medians: school-aged 3.0 versus 1.1, preschool 3.9 versus 1.8; p<0.001). Exhaled tobacco exposure was common in the severe wheeze cohort. Almost all participants in each cohort were atopic and had a normal body mass index. Asthma-related quality of life, as assessed by the Paediatric Asthma Quality of Life Questionnaire (PAQLQ) and the Paediatric Asthma Caregiver's Quality of Life Questionnaire (PACQLQ), was worse in the severe cohorts (mean±SE school-age PAQLQ: 4.77±0.15 versus 5.80±0.19; preschool PACQLQ: 4.27±0.18 versus 6.04±0.18; both p≤0.001); however, mild/moderate cohorts also had significant morbidity. Impaired quality of life was associated with poor control and airway obstruction. Otherwise, the severe and mild/moderate cohorts were clinically very similar. Children with severe preschool wheeze or severe asthma are usually atopic and have impaired quality of life that is associated with poor control and airflow limitation: a very different phenotype from adult severe asthma. In-depth phenotyping of these children, integrating clinical data with high-dimensional biomarkers, may help to improve and tailor their clinical management

    U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics

    Get PDF
    Background: Asthma is a heterogeneous disease in which there is a differential response to asthma treatments. This heterogeneity needs to be evaluated so that a personalized management approach can be provided. Objectives: We stratified patients with moderate-to-severe asthma based on clinicophysiologic parameters and performed an omics analysis of sputum. Methods: Partition-around-medoids clustering was applied to a training set of 266 asthmatic participants from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) adult cohort using 8 prespecified clinic-physiologic variables. This was repeated in a separate validation set of 152 asthmatic patients. The clusters were compared based on sputum proteomics and transcriptomics data. Results: Four reproducible and stable clusters of asthmatic patients were identified. The training set cluster T1 consists of patients with well-controlled moderate-to-severe asthma, whereas cluster T2 is a group of patients with late-onset severe asthma with a history of smoking and chronic airflow obstruction. Cluster T3 is similar to cluster T2 in terms of chronic airflow obstruction but is composed of nonsmokers. Cluster T4 is predominantly composed of obese female patients with uncontrolled severe asthma with increased exacerbations but with normal lung function. The validation set exhibited similar clusters, demonstrating reproducibility of the classification. There were significant differences in sputum proteomics and transcriptomics between the clusters. The severe asthma clusters (T2, T3, and T4) had higher sputum eosinophilia than cluster T1, with no differences in sputum neutrophil counts and exhaled nitric oxide and serum IgE levels. Conclusion: Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways
    corecore