346 research outputs found

    Structure of 55Sc and development of the N=34 subshell closure

    Get PDF
    The low-lying structure of 55^{55}Sc has been investigated using in-beam γ\gamma-ray spectroscopy with the 9^{9}Be(56^{56}Ti,55^{55}Sc+γ\gamma)XX one-proton removal and 9^{9}Be(55^{55}Sc,55^{55}Sc+γ\gamma)XX inelastic-scattering reactions at the RIKEN Radioactive Isotope Beam Factory. Transitions with energies of 572(4), 695(5), 1539(10), 1730(20), 1854(27), 2091(19), 2452(26), and 3241(39) keV are reported, and a level scheme has been constructed using γγ\gamma\gamma coincidence relationships and γ\gamma-ray relative intensities. The results are compared to large-scale shell-model calculations in the sdsd-pfpf model space, which account for positive-parity states from proton-hole cross-shell excitations, and to it ab initio shell-model calculations from the in-medium similarity renormalization group that includes three-nucleon forces explicitly. The results of proton-removal reaction theory with the eikonal model approach were adopted to aid identification of positive-parity states in the level scheme; experimental counterparts of theoretical 1/21+1/2^{+}_{1} and 3/21+3/2^{+}_{1} states are suggested from measured decay patterns. The energy of the first 3/23/2^{-} state, which is sensitive to the neutron shell gap at the Fermi surface, was determined. The result indicates a rapid weakening of the N=34N=34 subshell closure in pfpf-shell nuclei at Z>20Z>20, even when only a single proton occupies the πf7/2\pi f_{7/2} orbital

    Transfer Reaction Studies with Spectrometers

    Get PDF
    The revival of transfer reaction studies benefited from the construction of the new generation large solid angle spectrometers, coupled to large gamma arrays. The recent results of gamma-particle coincident measurements in Ca-40+Zr-96 and Ar-40+Pb-208 reactions demonstrate a strong interplay between single-particle and collective degrees of freedom that is pertinent to the reaction dynamics. The development of collectivity has been followed in odd Ar isotopes populated in the Ar-40+Pb-208 reaction through the excitation of the 11/2(-) states, understood as the coupling of single particle degrees of freedom to nuclear vibration quanta. Pair transfer modes is another important degree of freedom which is presently being studied with Prisma in inverse kinematics at energies far below the Coulomb barrier. First results from the Zr-96+Ca-40 reaction elucidate the role played by nucleon-nucleon correlation

    Mass correlation between light and heavy reaction products in multinucleon transfer 197Au+130Te collisions

    Get PDF
    We studied multinucleon transfer reactions in the 197Au+130Te system at Elab=1.07 GeV by employing the PRISMA magnetic spectrometer coupled to a coincident detector. For each light fragment we constructed, in coincidence, the distribution in mass of the heavy partner of the reaction. With a Monte Carlo method, starting from the binary character of the reaction, we simulated the de-excitation process of the produced heavy fragments to be able to understand their final mass distribution. The total cross sections for pure neutron transfer channels have also been extracted and compared with calculations performed with the grazing code

    Gamma-ray spectroscopy of 1738^{38}_{17}Cl using grazing reactions

    Full text link
    Excited states of 1738^{38}_{17}Cl21_{21} were populated in grazing reactions during the interaction of a beam of 1636^{36}_{16}S20_{20} ions of energy 215 MeV with a 82208^{208}_{82}Pb126_{126} target. The combination of the PRISMA magnetic spectrometer and the CLARA γ\gamma-ray detector array was used to identify the reaction fragments and to detect their decay via γ\gamma-ray emission. A level scheme for 38^{38}Cl is presented with tentative spin and parity assignments. The level scheme is discussed within the context of the systematics of neighboring nuclei and is compared with the results of state-of-the-art shell model calculations.Comment: 8 pages, 6 figures and 2 tables Changes: Table II and Figure 5 have been update

    Evidence for octupole collectivity in Pt-172

    Get PDF
    Excited states in the extremely neutron-deficient nucleus Pt-172 were populated via Ru-96(Kr-78, 2p) and Mo-92(Kr-83, 3n) reactions. The level scheme has been extended up to an excitation energy of approximate to 5MeV and tentative spin-parity assignments up to I-pi = 18(+). Linear polarization and angular distribution measurements were used to determine the electromagnetic E1 character of the dipole transitions connecting the positive-parity ground-state band with an excited side-band, firmly establishing it as a negativeparity band. The lowestmember of this negative-parity structure was firmly assigned spin-parity 3(-). In addition, we observed an E3 transition from this 3(-) state to the ground state, providing direct evidence for octupole collectivity in Pt-172. Large-scale shell model (LSSM) and total Routhian surface (TRS) calculations have been performed, supporting the interpretation of the 3(-) state as a collective octupole-vibrational state.Peer reviewe

    238U(n, γ) reaction cross section measurement with C 6D6 detectors at the n-TOF CERN facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n-TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.Peer reviewe
    corecore