81 research outputs found

    The Schrödinger equation in the context of fluid mechanics

    Full text link
    [ES] Se deriva un mapeo entre la ecuación de Schr¿odinger y la de Navier-Stokes, que generaliza el que propuso Madelung en 1926 con la ecuación de Euler. Dado que la mecánica de fluidos es el paradigma de teoría emergente, estos mapeos apoyan la interpretación de la mecánica cuántica como una teoría efectiva, emergente a partir de otra más fundamental. En el nuevo mapeo, además, el potencial cuántico se identifica con el término viscoso, en línea con recientes estudios que afirman que la cuanticidad tiene un origen disipativo.[EN] We derive a mapping between the Schro¿ dinger equation and the Navier-Stokes equation, which generalizes the one proposed by Madelung in 1926 with the Euler equation. Since ¿uid mechanics is the paradigm of an emergent theory, these maps support the interpretation of quantum mechanics as an effective theory, emerging from a more fundamental one. In the new mapping, moreover, the quantum potential is identi¿ed with the viscous term, in line with recent studies that claim that quantumness has a dissipative origin.J. Vazquez agradece a Manuel Monleón Pradas las referencias y discusiones sobre mecánica del medio continuo, y agradece la financiación al Programa de Becas de Movilidad Académica de la AUIP y al Programa de Ayudas de Investigación y Desarrollo de la UPV. D. Cabrera agradece la financiación del proyecto con Ref. FIS2014-51948-C2-1-P del Ministerio de Economía y Competitividad (España).Cabrera, D.; Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; Valdés Placeres, JM.; Vazquez Molina, J. (2016). La ecuación de Schrödinger en el contexto de la mecánica de fluidos. Revista Cubana de Fisica. 33(2):98-101. http://hdl.handle.net/10251/150048S9810133

    The CD14 (−159 C/T) SNP is associated with sCD14 levels and allergic asthma, but not with CD14 expression on monocytes

    Get PDF
    LPS-ligation to CD14/TLR-4 on monocytes/macrophages triggers the production of IL-12-family cytokines. IL12/18 promote TH1-differentiation, counteracting the TH2-driven asthma. Therefore, CD14 modulation could alter the TH2-differentiation and should be taken into account when studying asthma. To analyse the alteration in CD14 levels and its association with CD14 (−159 C/T) SNP (rs2569190) in Caucasian adults with stable allergic asthma, we performed a cross-sectional study (277 healthy subjects vs. 277 patients) where clinical parameters, CD14 values and the CD14 (−159 C/T) SNP were studied. Apart from typical biomarkers, we found an increment of neuron-specific enolase (NSE) in allergic asthma, probably linked to monocyte activity. Indeed, we evidenced increased monocyte numbers, but lower CD14 expression and normalised sCD14 values in patients. Moreover, we noticed an association of the T allele (P = 0.0162) and TT genotype (P = 0.0196) of the CD14 SNP with a decreased risk of allergic asthma and augmented sCD14 levels. In conclusion, monocyte CD14 expression and normalized sCD14 values were reduced in stable state asthmatics, and this could be related to the presence of an expanded CD14low monocyte subset. This study also demonstrates that the CD14 (−159 C/T) polymorphism is a risk factor for moderate-severe allergic asthma in adult CaucasiansThis study was funded by grants from Sociedad Española de Neumología y Cirugía Torácica, (SEPAR) (121/2012) and Instituto de Salud Carlos III, Ministerio de Economía y Competitividad (Fondo de Investigación Sanitaria, FIS; co-financed by European Union ERDF funds) (PI13/02046). JJNF is a recipient of a Xunta de Galicia Fellowship (Co-financed by European Social Fund (ESF))S

    Molecular and Cellular Mechanisms of Delayed Fracture Healing in Mmp10 (Stromelysin 2) Knockout Mice

    Get PDF
    The remodeling of the extracellular matrix is a central function in endochondral ossification and bone homeostasis. During secondary fracture healing, vascular invasion and bone growth requires the removal of the cartilage intermediate and the coordinate action of the collagenase matrix metalloproteinase (MMP)-13, produced by hypertrophic chondrocytes, and the gelatinase MMP-9, produced by cells of hematopoietic lineage. Interfering with these MMP activities results in impaired fracture healing characterized by cartilage accumulation and delayed vascularization. MMP-10, Stromelysin 2, a matrix metalloproteinase with high homology to MMP-3 (Stromelysin 1), presents a wide range of putative substrates identified in vitro, but its targets and functions in vivo and especially during fracture healing and bone homeostasis are not well defined. Here, we investigated the role of MMP-10 through bone regeneration in C57BL/6 mice. During secondary fracture healing, MMP-10 is expressed by hematopoietic cells and its maximum expression peak is associated with cartilage resorption at 14 days post fracture (dpf). In accordance with this expression pattern, when Mmp10 is globally silenced, we observed an impaired fracture-healing phenotype at 14 dpf, characterized by delayed cartilage resorption and TRAP-positive cell accumulation. This phenotype can be rescued by a non-competitive transplant of wild-type bone marrow, indicating that MMP-10 functions are required only in cells of hematopoietic linage. In addition, we found that this phenotype is a consequence of reduced gelatinase activity and the lack of proMMP-9 processing in macrophages. Our data provide evidence of the in vivo function of MMP-10 during endochondral ossification and defines the macrophages as the lead cell population in cartilage removal and vascular invasio

    Survival and dispersal routes of head-started loggerhead sea turtle (Caretta caretta) post-hatchlings in the Mediterranean Sea

    Full text link
    [EN] Several loggerhead sea turtle (Caretta caretta) nesting events have been recorded along Spain's Mediterranean coast, outside its known nesting range, in recent years. In view of the possible expansion of its nesting range and considering the conservation status of this species, management measures like nest protection and head-start programs have been implemented. To study the dispersal behavior and survival of head-started loggerheads, 19 post-hatchlings from three nesting events were satellite tracked after their release in three consecutive years (2015-2017). This paper presents the first study of survival probabilities and dispersal movements of loggerhead post-hatchlings in the Mediterranean basin. Monitored post-hatchlings dispersed over large areas using variable routes, mainly off the continental shelf. Nonetheless, post-hatchlings dispersed to high-productivity warmer areas during the coldest months of monitoring. These areas might be optimum for their survival and development. We observed differences regarding dispersal orientation and routes among individuals, even from the same nest, release date, and location. Our survival models contributed to improving current survival estimates for sea turtle post-hatchlings. We observed a high probability of survival in head-started individuals during the first months after release, usually the most critical period after reintroduction. The data did not support an effect of habitat (neritic or oceanic) in survival, or an effect of the region (Balearic sea or Alboran sea) in survival probability. Differences in survival between nests were observed. These differences might be related to parasitic infections suffered during the head-starting period. This study shows that nest management measures may contribute to the conservation and range expansion of the loggerhead turtle population in the western Mediterranean.This satellite study was funded by Universitat Politecnica de Valencia, Ministerio de Agricultura y Medio Ambiente (ref: 16MNSV006), Ministerio de Economia, Industria y Competitividad (ref: CGL2011-30413), Fundacion CRAM, Fundacion Hombre y Territorio and Eduardo J. Belda. Corresponding author, S. Abalo, was supported by a Ph.D. grant (FPU) from Ministerio de Educacion, Cultura y Deporte (Spain). J. Tomas is also supported by project Prometeo II (2015) of Generalitat Valenciana and project INDICIT of the European Commission, Environment Directorate-General. We are extremely thankful to the entities that have collaborated: we thank all professionals at the Oceanografic, especially at the ARCA Rehabilitation Center, for their many efforts and whole-hearted dedication to the best animal care. In particular, we are grateful to the Conselleria d'Agricultura, Medi Ambient, Canvi Climatic i Desenvolupament Rural of the Valencia Community Regional Government. We also thank the professionals at Centro de Recuperacion de Animales Marinos (CRAM) for their dedication and animal care. We are thankful to the Marine Zoology Unit of the University of Valencia, NGO Xaloc, EQUINAC, Aquarium of Sevilla, Donana Biological Station (EBD-CSIC) and to involved professionals at Consejeria de Medio Ambiente y Ordenacion del Territorio (CMAOT) of Junta de Andalucia, especially at the Andalusian Marine Environment Management Center (CEGMA) for their efforts with animal care, logistics for release events and necropsy of "Rabiosa". We are particularly grateful to the people who called 112 to report a nesting event and to the nest custody volunteers. Thanks are due to the staff of Parador de El Saler for volunteering logistical support. The authors wish to acknowledge the use of the Maptool program for analysis and graphics in this paper. Maptool is a product of SEATURTLE.ORG (Information is available at www.seaturtle.org). Also, we acknowledge the use of the Douglas Argos Filter (DAF) utility in Movebank (www.movebank.org) and especially David Douglas for his help and recommendations. Finally, we thank the reviewers for their reviewing efforts.Abalo-Morla, S.; Marco, A.; Tomás, J.; Revuelta, O.; Abella, E.; Marco, V.; Crespo-Picazo, J.... (2018). Survival and dispersal routes of head-started loggerhead sea turtle (Caretta caretta) post-hatchlings in the Mediterranean Sea. Marine Biology. 165(3). https://doi.org/10.1007/s00227-018-3306-2S1653Abella P, Marco A, Martins S, Hawkes LA (2016) Is this what a climate change-resilient population of marine turtles looks like? Biol Conserv 193:124–132. https://doi.org/10.1016/j.biocon.2015.11.023Addison DS, Nelson KA (2000) Recapture of a tagged, captive reared juvenile loggerhead turtle—an example of habituation? Mar Turt Newsl 89:15–16Agostellini C, Lund U (2017) R package ‘circular’: Circular Statistics (version 0.4-93). https://r-forge.r-project.org/projects/circular/ . Accessed 05 July 2017Arendt MD, Schwenter JA, Boynton J, Segars AL, Byrd JI, David W, Parker L (2012) Temporal trends (2000–2011) and influences on fishery-independent catch rates for loggerhead sea turtles (Caretta caretta) at an important coastal foraging region in the southeastern United States. Fish Bull 110:470–483Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25. https://doi.org/10.1016/j.tree.2007.10.003Baez J, Macias D, Antonio Caminas J, Ortiz de Urbina JM, Garcia-Barcelona S, Jesus Bellido J, Real R (2013) By-catch frequency and size differentiation in loggerhead turtles as a function of surface longline gear type in the western Mediterranean Sea. J Mar Biol Assoc UK 93:1423–1427. https://doi.org/10.1017/S0025315412001841Balbín R, Flexas MM, López-Jurado JL, Peña M, Amores A, Alemany F (2012) Vertical velocities and biological consequences at a front detected at the balearic sea. Cont Shelf Res 47:28–41. https://doi.org/10.1016/j.csr.2012.06.008Balbín R, López-Jurado JL, Flexas MM, Reglero P, Vélez-Velchí P, González-Pola C, Rodríguez JM, García A, Alemany F (2014) Interannual variability of the early summer circulation around the Balearic Islands: driving factors and potential effects on the marine ecosystem. J Mar Syst 138:70–81. https://doi.org/10.1016/j.jmarsys.2013.07.004Batschelet E (1981) Circular statistics in biology. Academic Press, LondonBell C, Parsons J (2002) Cayman turtle farm head-starting project yields tangible success. Mar Turt Newsl 98:5–6Bjorndal K, Bolten A, Martins H (2000) Somatic growth model of juvenile loggerhead sea turtles Caretta caretta: duration of pelagic stage. Mar Ecol Prog Ser 202:265–272. https://doi.org/10.3354/meps202265Bolten B (2003) Variation in sea turtle life history patterns: neritic vs. oceanic developmental stages. In: Lutz PL, Musick J, Wyneken J (eds) The biology of sea turtles. CRC Press, Boca Ratón, pp 243–257Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907. https://doi.org/10.1111/j.1365-294X.2007.03542.xBowen B, Avise JC, Richardson JI, Meylan AB, Margaritoulis D, Hopkins-Murphy SR (1993) Population Structure of loggerhead turtles (Caretta caretta) in the Northwestern Atlantic Ocean and Mediterranean Sea. Conserv Biol 7:834–844. https://doi.org/10.1046/j.1523-1739.1993.740834.xBriscoe D, Parker D, Balazs GH, Kurita M, Saito T, Okamoto H, Rice M, Polovina JJ, Crowder LB (2016) Active dispersal in loggerhead sea turtles (Caretta caretta) during the ‘lost years’. Proc R Soc B Biol Sci 283:1832. https://doi.org/10.1098/rspb.2016.0690Burke R (2015) Head-starting turtles: learning from experience. ‎Herpetol Conserv Biol 10(1):299–308Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New YorkCalenge C (2006) The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017Cardona L, Hays GC (2018) Ocean currents, individual movements and genetic structuring of populations. Mar Biol 165:10. https://doi.org/10.1007/s00227-017-3262-2Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, Aguilar A (2005) Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar Biol 147:583–591. https://doi.org/10.1007/s00227-005-1578-9Cardona L, Revelles M, Parga ML, Tomás J, Aguilar A, Alegre F, Raga A, Ferrer X (2009) Habitat use by loggerhead sea turtles Caretta caretta off the coast of eastern Spain results in a high vulnerability to neritic fishing gear. Mar Biol 156:2621–2630. https://doi.org/10.1007/s00227-009-1288-9Cardona L, Fernández G, Revelles M, Aguilar A (2012) Readaptation to the wild of rehabilitated loggerhead sea turtles (Caretta caretta) assessed by satellite telemetry. Aquatic Conserv Mar Freshw Ecosyst 22:104–112. https://doi.org/10.1002/aqc.1242Carr A (1987) New perspectives on the pelagic stage of sea turtle development. Conserv Biol 1:103–121. https://doi.org/10.1111/j.1523-1739.1987.tb00020.xCarreras C, Cardona L, Aguilar A (2004) Incidental catch of the loggerhead turtle Caretta caretta off the Balearic Islands (western Mediterranean). Biol Conserv 117:321–329. https://doi.org/10.1016/j.biocon.2003.12.010Carreras C, Pascual M, Tomás J, Marco A, Hochscheid S, Bellido J, Gozalbes P, Parga M, Piovano S, Cardona L (2015) From accidental nesters to potential colonisers, the sequencial colonisation of the mediterranean by the loggerhead sea turtle (Caretta caretta). In: Kaska Y, Sonmez B, Turkecan O, Sezgin C. Book of abstracts of 35th Annual Symposium on Sea Turtle Biology and Conservation. MACART press, TurkeyCasale P (2011) Sea turtle by-catch in the Mediterranean. Fish Fish 12:299–316. https://doi.org/10.1111/j.1467-2979.2010.00394.xCasale P, Heppell S (2016) How much sea turtle bycatch is too much? A stationary age distribution model for simulating population abundance and potential biological removal in the Mediterranean. Endanger Species Res 29:239–254. https://doi.org/10.3354/esr00714Casale P, Margaritoulis D (2010) Sea turtles in the Mediterranean: distribution, threats and conservation priorities. IUCN, GlandCasale P, Mariani P (2014) The first ‘lost year’ of Mediterranean Sea turtles: dispersal patterns indicate subregional management units for conservation. Mar Ecol Prog Ser 498:263–274. https://doi.org/10.3354/meps10640Casale P, Tucker AD (2015) Caretta caretta. The IUCN Red List of Threatened Species 2015: e.T3897A83157651. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T3897A83157651.en . Accessed 29 March 2017Casale P, Mazaris AD, Freggi D, Basso R, Argano R (2007) Survival probabilities of loggerhead sea turtles (Caretta caretta) estimated from capture-mark-recapture data in the Mediterranean Sea. Sci Mar 71:365–372Casale P, Mazaris AD, Freggi D, Vallini C, Argano R (2009) Growth rates and age at adult size of loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea, estimated through capture-mark-recapture records. Sci Mar 73:589–595. https://doi.org/10.3989/scimar.2009.73n3589Casale P, Mazaris A, Freggi D (2011) Estimation of age at maturity of loggerhead sea turtles Caretta caretta in the Mediterranean using length-frequency data. Endanger Species Res 13:123–129. https://doi.org/10.3354/esr00319Casale P, Freggi D, Furii G, Vallini C, Salvemini P, Deflorio M, Totaro G, Raimondi S, Fortuna C, Godley BJ (2015) Annual survival probabilities of juvenile loggerhead sea turtles indicate high anthropogenic impact on Mediterranean populations. Aquatic Conserv Mar Freshw Ecosyst 25:551–561. https://doi.org/10.1002/aqc.2467Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R (2009) U-CARE: Utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074. https://doi.org/10.1111/j.1600-0587.2009.05968.xChristiansen F, Putman NF, Farman R, Parker DM, Rice MR, Polovina JJ, Balazs GH, Hays GC (2016) Spatial variation in directional swimming enables juvenile sea turtles to reach and remain in productive waters. Mar Ecol Prog Ser 557:247–259. https://doi.org/10.3354/meps11874CLS (2016) Argos User’s Manual. http://www.argos-system.org/manual/3-location/34_location_classes.htm . Accessed 8 Sep 2016Clusa M, Carreras C, Pascual M, Demetropoulos A, Margaritoulis D, Rees AF, Hamza AA, Khalil M, Aureggi M, Levy Y, Türkozan O, Marco A, Aguilar A, Cardona L (2013) Mitochondrial DNA reveals Pleistocenic colonisation of the Mediterranean by loggerhead turtles (Caretta caretta). J Exp Mar Biol Ecol 439:15–24. https://doi.org/10.1016/j.jembe.2012.10.011Clusa M, Carreras C, Pascual M, Gaughran SJ, Piovano S, Giacoma C, Fernández G, Levy Y, Tomás J, Raga JA, Maffucci F, Hochscheid S, Aguilar A, Cardona L (2014) Fine-scale distribution of juvenile Atlantic and Mediterranean loggerhead turtles (Caretta caretta) in the Mediterranean Sea. Mar Biol 161:509–519. https://doi.org/10.1007/s00227-013-2353-yColes W, Musick JA (2000) Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia 2000:551–554. https://doi.org/10.1643/0045-8511(2000)000[0551:SSSTAA]2.0.CO;2Conant TA, Dutton PH, Eguchi T Epperly SP, Fahy CC, Godfrey MH, MacPherson SL, Possardt EE, Schroeder BA, Seminoff JA, Snover ML, Upite CM, Witherington BE (2009) Loggerhead sea turtle (Caretta caretta) 2009 status review under the US Endangered Species Act. Report of the Loggerhead Biological Review Team to the National Marine Fisheries Service, August 2009. NOAA Institutional Repository. https://repository.library.noaa.gov/view/noaa/16204 . Accessed 1 January 2018Coyne M, Godley B (2005) Satellite tracking and analysis tool (STAT): an integrated system for archiving, analyzing and mapping animal tracking data. Mar Ecol Prog Ser 301:1–7Crespo-Picazo JL, García-Párraga D, Domènech F, Tomás J, Aznar FJ, Ortega J, Corpa JM (2017) Parasitic outbreak of the copepod Balaenophilus manatorum in neonate loggerhead sea turtles (Caretta caretta) from a head-starting program. BMC Vet Res 13:154. https://doi.org/10.1186/s12917-017-1074-8Cribb TH, Crespo-Picazo JL, Cutmore SC, Stacy BA, Chapman PA, García-Párraga D (2017) Elucidation of the first definitively identified life cycle for a marine turtle blood fluke (Trematoda: Spirorchiidae) enables informed control. Int J Parasitol 47:61–67. https://doi.org/10.1016/j.ijpara.2016.11.002Delaugerre M, Cesarini C (2004) Confirmed nesting of the loggerhead turtle in Corsica. Mar Turt Newsl 104:12Demetropoulos A (2003) Impact of tourism development on marine turtle nesting: strategies and actions to minimise impact. In: Margaritoulis D, Demetropoulos A (eds) Proceedings of the First Mediterranean Conference on Marine Turtles. Barcelona Convention—Bern Convention—Bonn Convention (CMS). Nicosia, p 27–36Domènech F, Badillo FJ, Tomás J, Raga JA, Aznar FJ (2015) Epibiont communities of loggerhead marine turtles (Caretta caretta) in the western Mediterranean: influence of geographic and ecological factors. J Mar Biol Assoc UK 95:851–861. https://doi.org/10.1017/S0025315414001520Domènech F, Tomás J, Crespo-Picazo JL, García-Párraga D, Raga JA, Aznar FJ (2017) To swim or not to swim: potential transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in marine turtles. PLoS One 12:e0170789. https://doi.org/10.1371/journal.pone.0170789Douglas DC, Weinzierl R, Davidson CS, Kays R, Wikelski M, Bohrer G (2012) Moderating Argos location errors in animal tracking data. Methods Ecol Evol 3:999–1007. https://doi.org/10.1111/j.2041-210X.2012.00245.xEchwikhi K, Jribi I, Bradai MN, Bouain A (2012) Overview of loggerhead turtles coastal nets interactions in the Mediterranean Sea. Aquatic Conserv Mar Freshw Ecosyst 22:827–835. https://doi.org/10.1002/aqc.2270Gaube P, Barceló C, McGillicuddy DJ, Domingo A, Miller P, Giffoni B, Marcovaldi N, Swimmer Y (2017) The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS One 12:e0172839. https://doi.org/10.1371/journal.pone.0172839Godley BJ, Broderick AC, Glen F, Hays GC (2003) Post-nesting movements and submergence patterns of loggerhead marine turtles in the Mediterranean assessed by satellite tracking. J Exp Mar Biol Ecol 287:119–134. https://doi.org/10.1016/S0022-0981(02)00547-6González C, Bruno I, Maxwell S, Álvarez K, Albareda D, Acha EM, Campagna C (2016) Habitat use, site fidelity and conservation opportunities for juvenile loggerhead sea turtles in the Río de la Plata, Argentina. Mar Biol 163:1–13. https://doi.org/10.1007/s00227-015-2795-5Gueguen L (2000) Segmentation by maximal predictive partitioning according to composition biases. In: Gascuel O, Sagot MF (eds) Computational biology. lecture notes in computer science, 2066th edn. Springer, Berlin, pp 32–44Hays GC (2000) The implications of variable remigration intervals for the assessment of population size in marine turtles. J Therm Biol 206:221–227. https://doi.org/10.1006/jtbi.2000.2116Hays GC, Marsh R (1997) Estimating the age of juvenile loggerhead sea turtles in the North Atlantic. Can J Zool 75:40–46. https://doi.org/10.1139/z97-005Hays GC, Akesson S, Godley BJ, Luschi P, Santidrian P (2001) The implications of location accuracy for the interpretation of satellite-tracking data. Anim Behav 61:1035–1040. https://doi.org/10.1006/anbe.2001.1685Hays GC, Fossette S, Katselidis KA, Mariani P, Schofield G (2010) Ontogenetic development of migration: lagrangian drift trajectories suggest a new paradigm for sea turtles. J R Soc Interface 7:1319–1327. https://doi.org/10.1098/rsif.2010.0009Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM, Bailey H, Bailleul F, Bowen WD, Caley MJ, Costa DP, Eguíluz VM, Fossette S, Friedlaender AS, Gales N, Gleiss AC, Gunn J, Harcourt R, Hazen EL, Heithaus MR, Heupel M, Holland K, Horning M, Jonsen I, Kooyman GL, Lowe CG, Madsen PT, Marsh H, Phillips RA, Righton D, Ropert-Coudert Y, Sato K, Shaffer SA, Simpfendorfer CA, Sims DW, Skomal G, Takahashi A, Trathan PN, Wikelski M, Womble JN, Thums M (2016) Key questions in marine megafauna movement ecology. Trends Ecol Evol 31:463–475. https://doi.org/10.1016/j.tree.2016.02.015Hazen EL, Maxwell SM, Bailey H, Bograd SJ, Hamann M, Gaspar P, Godley BJ, Shillinger GL (2012) Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar Ecol Prog Ser 457:221–240. https://doi.org/10.3354/meps09857Heppell SS (1998) Application of life-history theory and population model analysis to turtle conservation. Copeia 1998:367–375. https://doi.org/10.2307/1447430Heppell SS, Crowder LB, Crouse DT (1996) Models to evaluate headstarting as a management tool for long-lived turtles. Ecol Appl 6:556–565. https://doi.org/10.2307/2269391Hines JE, Sauer JR (1989) Program CONTRAST–A general program for the analysis of several survival or recovery rate estimates. Fish and Wildlife Technical Report, 24Kobayashi DR, Farman R, Polovina JJ, Parker DM, Rice M, Balazs GH (2014) “Going with the Flow” or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta) in the South Pacific Ocean using satellite tags and ocean circulation data. PLoS One 9:e103701. https://doi.org/10.1371/journal.pone.0103701Kornaraki E, Matossian DA, Mazaris AD, Matsinos YG, Margaritoulis D (2006) Effectiveness of different conservation measures for loggerhead sea turtle (Caretta caretta) nests at Zakynthos Island, Greece. Biol Conserv 130:324–330. https://doi.org/10.1016/j.biocon.2005.12.027Lamont MM, Putman NF, Fujisaki I, Hart KM (2015) Spatial requirements of different life-stages of the loggerhead turtle (Caretta caretta) from a distinct population segment in the northern Gulf of Mexico. Herpetol Conserv Biol 10:2643Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. https://doi.org/10.2307/2937171Lohmann KJ, Putman NF, Lohmann CM (2012) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:336–342. https://doi.org/10.1016/j.conb.2011.11.005Luschi P, Casale P (2014) Movement patterns of marine turtles in the Mediterranean Sea: a review. Ital J Zool 81:478–495. https://doi.org/10.1080/11250003.2014.963714Maffucci F, Corrado R, Palatella L, Borra M, Marullo S, Hochscheid S, Lacorata G, Iudicone D (2016) Seasonal heterogeneity of ocean warming: a mortality sink for ectotherm colonizers. Sci Rep 6:23983. https://doi.org/10.1038/srep23983MAGRAMA (2012) Estrategia Marina. Demarcación Marina Levantino-Balear, Parte I: Marco general, Evaluación inicial y buen estado ambiental. Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.mapama.gob.es/es/costas/temas/proteccion-medio-marino/I_Marco_General_Levantino-Balear_tcm7-204338.pdf . Accessed 29 March 2017Mansfield KL, Wyneken J, Rittschof D, Walsh M, Lim CW, Richards PM et al (2012) Satellite tag attachment methods for tracking neonate sea turtles. Mar Ecol Prog Ser 457:181–192. https://doi.org/10.3354/meps09485Mansfield KL, Wyneken J, Porter WP, Luo J (2014) First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2013.3039Mansfield KL, Mendilaharsu ML, Putman NF, dei Marcovaldi MAG, Sacco AE, Lopez G, Pires T, Swimmer Y (2017) First satellite tracks of South Atlantic sea turtle ‘lost years’: seasonal variation in trans-equatorial movement. Proc R Soc B 284:20171730. https://doi.org/10.1098/rspb.2017.1730Margaritoulis D, Argano R, Baran I, Bentivegna F, Bradai MN, Camiñas JA, Casale P (2003) Loggerhead turtles in the Mediterranean Sea: present knowledge and conservation perspectives. In: Bolten AB (ed) Loggerhead Sea Turtle, B.E. Witherington. Smithsonian Institution

    Transient exposure to miR-203 expands the differentiation capacity of pluripotent stem cells

    Get PDF
    Full differentiation potential along with self‐renewal capacity is a major property of pluripotent stem cells (PSCs). However, the differentiation capacity frequently decreases during expansion of PSCs in vitro . We show here that transient exposure to a single microRNA, expressed at early stages during normal development, improves the differentiation capacity of already‐established murine and human PSCs. Short exposure to miR‐203 in PSCs (mi PSCs) induces a transient expression of 2C markers that later results in expanded differentiation potency to multiple lineages, as well as improved efficiency in tetraploid complementation and human–mouse interspecies chimerism assays. Mechanistically, these effects are at least partially mediated by direct repression of de novo DNA methyltransferases Dnmt3a and Dnmt3b, leading to transient and reversible erasure of DNA methylation. These data support the use of transient exposure to miR‐203 as a versatile method to reset the epigenetic memory in PSCs, and improve their effectiveness in regenerative medicine

    Identifying sustainability priorities among value chain actors in artisanal common octopus fisheries

    Get PDF
    The United Nations (UN) Decade of Ocean Science highlights a need to improve the way in which scientific results effectively inform action and policies regarding the ocean. Our research contributes to achieving this goal by identifying practical actions, barriers, stakeholder contributions and resources required to increase the sustainability of activities carried out in the context of artisanal fisheries to meet UN Sustainable Development Goals (SDG) and International Year of Artisanal Fisheries and Aquaculture (IYAFA) Global Action Plan (GAP) Pillar targets. We conducted a novel ‘social value chain analysis’ via a participatory workshop to elicit perspectives of value chain actors and fisheries stakeholders associated with two Spanish artisanal common octopus (Octopus vulgaris) fisheries (western Asturias—Marine Stewardship Council [MSC] certified, and Galicia—non-MSC certified) about their priorities regarding sustainable octopus production and commercializationOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors acknowledge the financial support from the Cephs and Chefs Project (https://www.cephsandchefs.com/) funded by the European Regional Development Fund (https://ec.europa.eu/regional_policy/en/funding/erdf/) through the Interreg Atlantic Area Programme grant number EAPA_282/2016. CP, TF, KR and DC would also like to acknowledge financial support to CESAM by FCT/MCTES (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020), through national funds. CP acknowledges the FCT research contract 2020.02510.CEECIND. SV and PP acknowledge the financial support from the Xunta de Galicia (https://www.xunta.gal/portada) (RECREGES II project under Grant 1400 ED481B2018/017 and Grupo de Referencia Competitiva GI-2060 AEMI, under Grant 1401 ED431C2019/11). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptS

    Mutational spectrum of GNAL, THAP1 and TOR1A genes in isolated dystonia: study in a population from Spain and systematic literature review

    Get PDF
    [Objective] We aimed to investigate the prevalence of TOR1A, GNAL and THAP1 variants as the cause of dystonia in a cohort of Spanish patients with isolated dystonia and in the literature.[Methods] A population of 2028 subjects (including 1053 patients with different subtypes of isolated dystonia and 975 healthy controls) from southern and central Spain was included. The genes TOR1A, THAP1 and GNAL were screened using a combination of high-resolution melting analysis and direct DNA resequencing. In addition, an extensive literature search to identify original articles (published before 10 August 2020) reporting mutations in TOR1A, THAP1 or GNAL associated to dystonia was performed.[Results] Pathogenic or likely pathogenic variants in TOR1A, THAP1 and GNAL were identified in 0.48%, 0.57% and 0.29% of our patients, respectively. Five patients carried the variation p.Glu303del in TOR1A. A very rare variant in GNAL (p.Ser238Asn) was found as a putative risk factor for dystonia. In the literature, variations in TOR1A, THAP1 and GNAL accounted for about 6%, 1.8% and 1.1% of published dystonia patients, respectively.[Conclusions] There is a different genetic contribution to dystonia of these three genes in our patients (about 1.3% of patients) and in the literature (about 3.6% of patients), probably due the high proportion of adult-onset cases in our cohort. As regards age at onset, site of dystonia onset, and final distribution, in our population there is a clear differentiation between DYT-TOR1A and DYT-GNAL, with DYT-THAP1 likely to be an intermediate phenotype.This work was supported by the Carlos III Health Institute-European Regional Development Fund (ISCIII-FEDER) [PI14/01823, PI16/01575, PI18/01898, PI19/01576], the Andalusian Regional Ministry of Economics, Innovation, Science and Employment [CVI-02526, CTS-7685], the Andalusian Regional Ministry of Health and Welfare [PI-0741-2010, PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019], and the Alicia Koplowitz and Mutua Madrileña Foundations. Pilar Gómez-Garre was supported by the "Miguel Servet" program [MSII14/00018] (from ISCIII-FEDER) and “Nicolás Monardes” program [C-0048-2017] (from the Andalusian Regional Ministry of Health). Silvia Jesús was supported by the "Juan Rodés" program [B-0007-2019] and Daniel Macías-García by the “Río Hortega” program [CM18/00142] (both from ISCIII-FEDER). María Teresa Periñán was supported by the Spanish Ministry of Education [FPU16/05061]. Cristina Tejera was supported by VPPI-US from the University of Seville.Peer reviewe

    Anaplasma phagocytophilum MSP4 and HSP70 proteins are involved in interactions with host cells during pathogen infection.

    Get PDF
    Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4- HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens

    Ambient air pollution and thyroid function in Spanish adults. A nationwide population-based study ([email protected] study)

    Get PDF
    Background Recent reports have suggested that air pollution may impact thyroid function, although the evidence is still scarce and inconclusive. In this study we evaluated the association of exposure to air pollutants to thyroid function parameters in a nationwide sample representative of the adult population of Spain. Methods The [email protected] study is a national, cross-sectional, population-based survey which was conducted in 2008-2010 using a random cluster sampling of the Spanish population. The present analyses included 3859 individuals, without a previous thyroid disease diagnosis, and with negative thyroid peroxidase antibodies (TPO Abs) and thyroid-stimulating hormone (TSH) levels of 0.1-20 mIU/L. Participants were assigned air pollution concentrations for particulate matter <2.5 mu m (PM2.5) and Nitrogen Dioxide (NO2), corresponding to the health examination year, obtained by means of modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). TSH, free thyroxine (FT4), free triiodothyronine (FT3) and TPO Abs concentrations were analyzed using an electrochemiluminescence immunoassay (Modular Analytics E170 Roche). Results In multivariate linear regression models, there was a highly significant negative correlation between PM2.5 concentrations and both FT4 (p<0.001), and FT3 levels (p<0.001). In multivariate logistic regression, there was a significant association between PM2.5 concentrations and the odds of presenting high TSH [OR 1.24 (1.01-1.52) p=0.043], lower FT4 [OR 1.25 (1.02-1.54) p=0.032] and low FT3 levels [1.48 (1.19-1.84) p=<0.001] per each IQR increase in PM2.5 (4.86 mu g/m(3)). There was no association between NO2 concentrations and thyroid hormone levels. No significant heterogeneity was seen in the results between groups of men, pre-menopausal and post-menopausal women. Conclusions Exposures to PM2.5 in the general population were associated with mild alterations in thyroid function.CIBERDEM (Ministerio de Economia, Industria y Competitividad-ISCIII), Ministerio de Sanidad, Servicios Sociales e Igualdad-ISCIII, Instituto de Salud Carlos III (PI17/02136, PI20/01322), Consejeria de Salud y familias (PI-0144-2018), European Regional Development Fund (ERDF) "A way to build Europe". GRM belongs to the regional Nicolas Monardes research program of the Consejeria de Salud (RC-0006-2016; Junta de Andalucia, Spain). CMA is recipient of a "Rio Hortega" research contract (CM19/00186, Instituto de Salud Carlos III). VKDG is recipient of a "Rio Hortega" research contract (CM21/00214, Instituto de Salud Carlos III)
    corecore