9 research outputs found
Mitochondrial DNA impact on joint damaged process in a conplastic mouse model after being surgically induced with osteoarthritis.
It has been suggested that mitochondrial dysfunction and mtDNA variations may contribute to osteoarthritis (OA) pathogenesis. However, the causative link to support this claim is lacking. Here, we surgically-induced OA in conplastic mice in order to evaluate the functional consequences of mtDNA haplotypes in their joint degeneration. BL/6NZB strain was developed with C57BL/6JOlaHsd nuclear genome and NZB/OlaHsdmtDNA while BL/6C57, which is the original, was developed with C57BL/6JOlaHsd nuclear genome and C57/OlaHsdmtDNA for comparison. The surgical DMM OA model was induced in both strains. Their knees were processed and examined for histopathological changes. Cartilage expression of markers of autophagy, apoptosis, oxidative stress and senescence were also analyzed by immunohistochemistry. The joints of BL/6NZB mice that were operated presented more cellularity together with a reduced OARSI histopathology score, subchondral bone, menisci score and synovitis compared to those of BL/6C57 mice. This was accompanied with higher autophagy and a lower apoptosis in the cartilage of BL/6NZB mice that were operated. Therefore, the study demonstrates the functional impact of non-pathological variants of mtDNA on OA process using a surgically-induced OA model. Conplastic (BL/6NZB ) mice develop less severe OA compared to the BL/6C57original strain. These findings demonstrate that mitochondria and mtDNA are critical targets for potential novel therapeutic approaches to treat osteoarthritis.This work is supported by grants from Fondo de Investigación Sanitaria (CIBERCB06/01/0040-Spain, RETIC-RIER-RD16/0012/0002, PI16/02124, PI19/01206) integrated in the National Plan for Scientific Program, Development and Technological Innovation 2013–2016 and funded by the ISCIII-General Sub direction of Assessment and Promotion of Research-European Regional Development Fund (FEDER)“A way of making Europe”. MS is “Sara Borrell” researcher funded by ISCIII and FEDER (CD16/00099). IRP is funded by the Instituto de Salud Carlos III through a Miguel Servet-II programme (CPII17/00026). CVG is supported by Contrato Posdoctoral Xunta de Galicia (ED481D2017/023).S
The nuclear factor-erythroid 2-related factor/heme oxygenase-1 axis is critical for the inflammatory features of type 2 diabetes–associated osteoarthritis
International audienceEpidemiological findings support the hypothesis that type 2 diabetes mellitus (T2DM) is a risk factor for osteoarthritis (OA). Moreover, OA cartilage from patients with T2DM exhibits a greater response to inflammatory stress, but the molecular mechanism is unclear. To investigate whether the antioxidant defense system participates in this response, we examined here the expression of nuclear factor-erythroid 2-related factor (Nrf-2), a master antioxidant transcription factor, and of heme oxygenase-1 (HO-1), one of its main target genes, in OA cartilage from T2DM and non-T2DM patients as well as in murine chondrocytes exposed to high glucose (HG). Ex vivo experiments indicated that Nrf-2 and HO-1 expression is reduced in T2DM versus non-T2DM OA cartilage (0.57-fold Nrf-2 and 0.34-fold HO-1), and prostaglandin E2 (PGE2) release was increased in samples with low HO-1 expression. HG-exposed, IL-1β-stimulated chondrocytes had lower Nrf-2 levels in vitro, particularly in the nuclear fraction, than chondrocytes exposed to normal glucose (NG). Accordingly, HO-1 levels were also decreased (0.49-fold) in these cells. The HO-1 inducer cobalt protoporphyrin IX more efficiently attenuated PGE2 and IL-6 release in HG+IL-1β-treated cells than in NG+IL-1β-treated cells. Greater reductions in HO-1 expression and increase in PGE2/IL-6 production were observed in HG+IL-1β-stimulated chondrocytes from Nrf-2−/− mice than in chondrocytes from wild-type mice. We conclude that the Nrf-2/HO-1 axis is a critical pathway in the hyperglucidic-mediated dysregulation of chondrocytes. Impairments in this antioxidant system may explain the greater inflammatory responsiveness of OA cartilage from T2DM patients and may inform treatments of such patients
Impairment of glyoxalase-1, an advanced glycation end-product detoxifying enzyme, induced by inflammation in age-related osteoarthritis
Abstract Background Accumulation of advanced glycation end-products (AGEs) is involved in age-related osteoarthritis (OA). Glyoxalase (Glo)-1 is the main enzyme involved in the removal of AGE precursors, especially carboxymethyl-lysine (CML). We aimed to investigate the expression of several AGEs and Glo-1 in human OA cartilage and to study chondrocytic Glo-1 regulation by inflammation, mediated by interleukin (IL)-1β. Methods Ex vivo, we quantified AGEs (pentosidine, CML, methylglyoxal-hydroimidazolone-1) in knee cartilage from 30 OA patients. Explants were also incubated with and without IL-1β, and we assessed Glo-1 protein expression and enzymatic activity. In vitro, primary cultured murine chondrocytes were stimulated with increasing concentrations of IL-1β to assess Glo-1 enzymatic activity and expression. To investigate the role of oxidative stress in the IL-1β effect, cells were also treated with inhibitors of mitochondrial oxidative stress or nitric oxide synthase. Results Ex vivo, only the human cartilage CML content was correlated with patient age (r = 0.78, p = 0.0031). No statistically significant correlation was found between Glo-1 protein expression and enzymatic activity in human cartilage and patient age. We observed that cartilage explant stimulation with IL-1β decreased Glo-1 protein expression and enzymatic activity. In vitro, we observed a dose-dependent decrease in Glo-1 mRNA, protein quantity, and enzymatic activity in response to IL-1β in murine chondrocytes. Inhibitors of oxidative stress blunted this downregulation. Conclusion Glo-1 is impaired by inflammation mediated by IL-1β in chondrocytes through oxidative stress pathways and may explain age-dependent accumulation of the AGE CML in OA cartilage
DNA barcoding and the Associated PhylAphidB@se Website for the identification of European Aphids (Insecta: Hemiptera: Aphididae)
International audienceAphids constitute a diverse group of plant-feeding insects and are among the most important crop pests in temperate regions. Their morphological identification is time-consuming and requires specific knowledge, training and skills that may take years to acquire. We assessed the advantages and limits of DNA barcoding with the standard COI barcode fragment for the identification of European aphids. We constructed a large reference dataset of barcodes from 1020 specimens belonging to 274 species and 87 genera sampled throughout Europe and set up a database-driven website allowing species identification from query sequences. [br/]Results: In this unbiased sampling of the taxonomic diversity of European aphids, intraspecific divergence ranged from 0.0% to 3.9%, with a mean value of 0.29%, whereas mean congeneric divergence was 6.4%, ranging from 0.0% to 15%. Neighborjoining analysis generated a tree in which most species clustered in distinct genetic units. Most of the species with undifferentiated or overlapping barcodes belonged to the genus Aphis or, to a lesser extent, the genera Brachycaudus, Dysaphis and Macrosiphum. The taxa involved were always morphologically similar or closely related and belonged to species groups known to present taxonomic difficulties. [br/]Conclusions: These data confirm that COI barcoding is a useful identification tool for aphids. Barcode identification is straightforward and reliable for 80% of species, including some difficult to distinguish on the basis of morphological characters alone. Unsurprisingly, barcodes often failed to distinguish between species from groups for which classical taxonomy has also reached its limits, leading to endless revisions and discussions about species and subspecies definitions. In such cases, the development of an effective procedure for the accurate identification of aphid specimens continues to pose a difficult challenge
Development and validation of a score to predict postoperative respiratory failure in a multicentre European cohort : A prospective, observational study
BACKGROUND Postoperative respiratory failure (PRF) is the most frequent respiratory complication following surgery. OBJECTIVE The objective of this study was to build a clinically useful predictive model for the development of PRF. DESIGN A prospective observational study of a multicentre cohort. SETTING Sixty-three hospitals across Europe. PATIENTS Patients undergoing any surgical procedure under general or regional anaesthesia during 7-day recruitment periods. MAIN OUTCOME MEASURES Development of PRF within 5 days of surgery. PRF was defined by a partial pressure of oxygen in arterial blood (PaO2) less than 8 kPa or new onset oxyhaemoglobin saturation measured by pulse oximetry (SpO(2)) less than 90% whilst breathing room air that required conventional oxygen therapy, noninvasive or invasive mechanical ventilation. RESULTS PRF developed in 224 patients (4.2% of the 5384 patients studied). In-hospital mortality [95% confidence interval (95% CI)] was higher in patients who developed PRF [10.3% (6.3 to 14.3) vs. 0.4% (0.2 to 0.6)]. Regression modelling identified a predictive PRF score that includes seven independent risk factors: low preoperative SpO(2); at least one preoperative respiratory symptom; preoperative chronic liver disease; history of congestive heart failure; open intrathoracic or upper abdominal surgery; surgical procedure lasting at least 2 h; and emergency surgery. The area under the receiver operating characteristic curve (c-statistic) was 0.82 (95% CI 0.79 to 0.85) and the Hosmer-Lemeshow goodness-of-fit statistic was 7.08 (P = 0.253). CONCLUSION A risk score based on seven objective, easily assessed factors was able to predict which patients would develop PRF. The score could potentially facilitate preoperative risk assessment and management and provide a basis for testing interventions to improve outcomes. The study was registered at ClinicalTrials.gov (identifier NCT01346709)
Development of a prediction model for postoperative pneumonia A multicentre prospective observational study
BACKGROUND Postoperative pneumonia is associated with increased morbidity, mortality and costs. Prediction models of pneumonia that are currently available are based on retrospectively collected data and administrative coding systems. OBJECTIVE To identify independent variables associated with the occurrence of postoperative pneumonia. DESIGN A prospective observational study of a multicentre cohort (Prospective Evaluation of a RIsk Score for postoperative pulmonary COmPlications in Europe database). SETTING Sixty-three hospitals in Europe. PATIENTS Patients undergoing surgery under general and/or regional anaesthesia during a 7-day recruitment period. MAIN OUTCOME MEASURE The primary outcome was postoperative pneumonia. Definition: the need for treatment with antibiotics for a respiratory infection and at least one of the following criteria: new or changed sputum; new or changed lung opacities on a clinically indicated chest radiograph; temperature more than 38.3 degrees C; leucocyte count more than 12 000 mu l(-1). RESULTS Postoperative pneumonia occurred in 120 out of 5094 patients (2.4%). Eighty-two of the 120 (68.3%) patients with pneumonia required ICU admission, compared with 399 of the 4974 (8.0%) without pneumonia (P < 0.001). We identified five variables independently associated with postoperative pneumonia: functional status [odds ratio (OR) 2.28, 95% confidence interval (CI) 1.58 to 3.12], pre-operative SpO(2) values while breathing room air (OR 0.83, 95% CI 0.78 to 0.84), intra-operative colloid administration (OR 2.97, 95% CI 1.94 to 3.99), intra-operative blood transfusion (OR 2.19, 95% CI 1.41 to 4.71) and surgical site (open upper abdominal surgery OR 3.98, 95% CI 2.19 to 7.59). The model had good discrimination (c-statistic 0.89) and calibration (Hosmer-Lemeshow P = 0.572). CONCLUSION We identified five variables independently associated with postoperative pneumonia. The model performed well and after external validation may be used for risk stratification and management of patients at risk of postoperative pneumonia