1,905 research outputs found
Continuous Hawking-Page transitions in Einstein-scalar gravity
We investigate continuous Hawking-Page transitions in Einstein's gravity
coupled to a scalar field with an arbitrary potential in the weak gravity
limit. We show that this is only possible in a singular limit where the
black-hole horizon marginally traps a curvature singularity. Depending on the
subleading terms in the potential, a rich variety of continuous phase
transitions arise. Our examples include second and higher order, including the
Berezinskii-Kosterlitz-Thouless type. In the case when the scalar is dilaton,
the condition for a continuous phase transition lead to (asymptotically)
linear-dilaton background. We obtain the scaling laws of thermodynamic
functions, as well as the viscosity coefficients near the transition. In the
limit of weak gravitational interactions, the bulk viscosity asymptotes to a
universal constant, independent of the details of the scalar potential. As a
byproduct of our analysis we obtain a one-parameter family of kink solutions in
arbitrary dimension d that interpolate between AdS near the boundary and
linear-dilaton background in the deep interior. The continuous Hawking-Page
transitions found here serve as holographic models for normal-to superfluid
transitions.Comment: 35 pages + appendice
Young neutron stars with soft gamma ray emission and anomalous X-ray pulsar
The observational properties of Soft Gamma Repeaters and Ano\-malous X-ray
Pulsars (SGR/AXP) indicate to necessity of the energy source different from a
rotational energy of a neutron star. The model, where the source of the energy
is connected with a magnetic field dissipation in a highly magnetized neutron
star (magnetar) is analyzed. Some observational inconsistencies are indicated
for this interpretation. The alternative energy source, connected with the
nuclear energy of superheavy nuclei stored in the nonequilibrium layer of low
mass neutron star is discussed.Comment: 29 pages, 13 figures, Springer International Publishing Switzerland
2016 A.W. Alsabti, P. Murdin (eds.), Handbook of Supernova
Individualization as driving force of clustering phenomena in humans
One of the most intriguing dynamics in biological systems is the emergence of
clustering, the self-organization into separated agglomerations of individuals.
Several theories have been developed to explain clustering in, for instance,
multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of
fish, and animal herds. A persistent puzzle, however, is clustering of opinions
in human populations. The puzzle is particularly pressing if opinions vary
continuously, such as the degree to which citizens are in favor of or against a
vaccination program. Existing opinion formation models suggest that
"monoculture" is unavoidable in the long run, unless subsets of the population
are perfectly separated from each other. Yet, social diversity is a robust
empirical phenomenon, although perfect separation is hardly possible in an
increasingly connected world. Considering randomness did not overcome the
theoretical shortcomings so far. Small perturbations of individual opinions
trigger social influence cascades that inevitably lead to monoculture, while
larger noise disrupts opinion clusters and results in rampant individualism
without any social structure. Our solution of the puzzle builds on recent
empirical research, combining the integrative tendencies of social influence
with the disintegrative effects of individualization. A key element of the new
computational model is an adaptive kind of noise. We conduct simulation
experiments to demonstrate that with this kind of noise, a third phase besides
individualism and monoculture becomes possible, characterized by the formation
of metastable clusters with diversity between and consensus within clusters.
When clusters are small, individualization tendencies are too weak to prohibit
a fusion of clusters. When clusters grow too large, however, individualization
increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
An international comparative study of blood pressure in populations of European vs. African descent
Background: The consistent finding of higher prevalence of hypertension in US blacks compared
to whites has led to speculation that African-origin populations are particularly susceptible to this
condition. Large surveys now provide new information on this issue.
Methods: Using a standardized analysis strategy we examined prevalence estimates for 8 white
and 3 black populations (N = 85,000 participants).
Results: The range in hypertension prevalence was from 27 to 55% for whites and 14 to 44% for
blacks.
Conclusions: These data demonstrate that not only is there a wide variation in hypertension
prevalence among both racial groups, the rates among blacks are not unusually high when viewed
internationally. These data suggest that the impact of environmental factors among both
populations may have been under-appreciated
The Role of Bile in the Regulation of Exocrine Pancreatic Secretion
As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap
Diets containing sea cucumber (Isostichopus badionotus) meals are hypocholesterolemic in young rats
Peer reviewedPublisher PD
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Determinants of frequent use of open consultations: a study on patient demographics, chronic conditions, and utilization patterns in primary care
In Portugal, open consultations (OCs) in primary health care address urgent medical needs, constituting 40–50% of family doctor activity. Frequent attenders (FAs), often presenting nonacute issues, significantly contribute to health care overuse. This study aimed to identify factors associated with frequent OC use in a primary health care unit during 2022. A retrospective cross-sectional analysis was conducted on 4,269 adult patients, with frequent attendance defined as four or more consultations (≥90th percentile). Sociodemographic and clinical factors, including age, sex, employment, chronic conditions, and multimorbidity, were examined using binomial logistic regression. FAs (n = 570, 13.4%) accounted for 36.2% of all consultations. Significant associated variables included female sex (OR = 1.417), economic insufficiency (OR = 1.323), and multimorbidity (OR = 1.678). Conditions such as musculoskeletal (OR = 2.146), psychological (OR = 2.040), and neurological (OR = 1.550) disorders were strongly linked to frequent attendance. While FAs represent a minority of patients, their disproportionate use of OC services underscores the need for targeted interventions, such as individualized care plans and resource optimization, to balance demand and availability. These findings highlight critical areas for policy and practice to enhance health care efficiency
The Eyes Have It: Sex and Sexual Orientation Differences in Pupil Dilation Patterns
Recent research suggests profound sex and sexual orientation differences in sexual response. These results, however, are based on measures of genital arousal, which have potential limitations such as volunteer bias and differential measures for the sexes. The present study introduces a measure less affected by these limitations. We assessed the pupil dilation of 325 men and women of various sexual orientations to male and female erotic stimuli. Results supported hypotheses. In general, self-reported sexual orientation corresponded with pupil dilation to men and women. Among men, substantial dilation to both sexes was most common in bisexual-identified men. In contrast, among women, substantial dilation to both sexes was most common in heterosexual-identified women. Possible reasons for these differences are discussed. Because the measure of pupil dilation is less invasive than previous measures of sexual response, it allows for studying diverse age and cultural populations, usually not included in sexuality research
- …
