17 research outputs found

    Stochastic Bundle Adjustment for Efficient and Scalable 3D Reconstruction

    Full text link
    Current bundle adjustment solvers such as the Levenberg-Marquardt (LM) algorithm are limited by the bottleneck in solving the Reduced Camera System (RCS) whose dimension is proportional to the camera number. When the problem is scaled up, this step is neither efficient in computation nor manageable for a single compute node. In this work, we propose a stochastic bundle adjustment algorithm which seeks to decompose the RCS approximately inside the LM iterations to improve the efficiency and scalability. It first reformulates the quadratic programming problem of an LM iteration based on the clustering of the visibility graph by introducing the equality constraints across clusters. Then, we propose to relax it into a chance constrained problem and solve it through sampled convex program. The relaxation is intended to eliminate the interdependence between clusters embodied by the constraints, so that a large RCS can be decomposed into independent linear sub-problems. Numerical experiments on unordered Internet image sets and sequential SLAM image sets, as well as distributed experiments on large-scale datasets, have demonstrated the high efficiency and scalability of the proposed approach. Codes are released at https://github.com/zlthinker/STBA.Comment: Accepted by ECCV 202

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ (5σ) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    On the relativistic theory of tunneling

    No full text
    A relativistic generalization of the semiclassical theory of tunneling and multiphoton ionization of atoms and ions in the field of a high-intensity electromagnetic wave with linear, circular, and elliptic polarization is constructed. The exponential factor in the ionization probability is calculated for arbitrary values of adiabaticity parameter gamma. In the case of low-frequency laser radiation, an asymptotically exact formula is derived for the ionization rate of the s atomic level, including the Coulomb, spin, and adiabatic corrections and the preexponential factor. (C) 2004 MAIK "Nauka / Interperiodica"

    A spatially indirect exciton in vertically coupled quantum dots:1/Q-expansion

    No full text
    A spatially indirect exciton in vertically coupled quantum dots is considered with the use of 1/Q-expansion, where Q is the dimensionless quantum parameter determined by the ratio of characteristic Coulomb energy of electron-hole interaction to the energy of one-particle transition in a confining potential. Analytical expressions for the energies and the wave functions are derived. They are asymptotically exact when Q much greater than I and the parameter of separation of quantum dots d is much larger than the size of a direct exciton a*(B). It is shown, however, that even the first four terms in the 1/Q-expansion provide one percent accuracy for the energies of relative motion in the ground and the first excited states of the exciton for Q greater than or similar to 2 and d greater than or similar to a*(B). It is also shown that the Pade summation of the first four terms in the 1/Q-expansion provides accuracy no worse than 5% even for Q similar to 0.2. We use the perturbation theory with respect to Coulomb interaction to calculate the energies for smaller values of Q and thus obtain analytical expressions for them in the whole range of variation of the parameter Q
    corecore