681 research outputs found

    High expression of Cathepsin E in tissues but not blood of patients with Barrett’s esophagus and adenocarcinoma

    Get PDF
    Background Cathepsin E (CTSE), an aspartic proteinase, is differentially expressed in the metaplasia–dysplasia–neoplasia sequence of gastric and colon cancer. We evaluated CTSE in Barrett’s esophagus (BE) and cancer because increased CTSE levels are linked to improved survival in several cancers, and other cathepsins are up-regulated in BE and esophageal adenocarcinoma (EAC). Methods A total of 273 pretreatment tissues from 199 patients were analyzed [31 normal squamous esophagus (NE), 29 BE intestinal metaplasia, 31 BE with dysplasia (BE/D), 108 EAC]. CTSE relative mRNA expression was measured by real-time polymerase chain reaction, and protein expression was measured by immunohistochemistry. CTSE serum levels were determined by enzyme-linked immunosorbent assay. Results Median CTSE mRNA expression levels were ≥1,000-fold higher in BE/intestinal metaplasia and BE/D compared to NE. CTSE levels were significantly lower in EAC compared to BE/intestinal metaplasia and BE/D, but significantly higher than NE levels. A similar expression pattern was present in immunohistochemistry, with absent staining in NE, intense staining in intestinal metaplasia and dysplasia, and less intense EAC staining. CTSE serum analysis did not discriminate patient groups. In a uni- and multivariable Cox proportional hazards model, CTSE expression was not significantly associated with survival in patients with EAC, although CTSE expression above the 25th percentile was associated with a 41 % relative risk reduction for death (hazard ratio 0.59, 95 % confidence interval 0.27–1.26, p = 0.17). Conclusions CTSE mRNA expression is up-regulated more than any known gene in Barrett intestinal metaplasia and dysplasia tissues. Protein expression is similarly highly intense in intestinal metaplasia and dysplasia tissues

    Awe and Wonder in Scientific Practice: Implications for the Relationship Between Science and Religion

    Get PDF
    This paper examines the role of awe and wonder in scientific practice. Drawing on evidence from psychological research and the writings of scientists and science communicators, I argue that awe and wonder play a crucial role in scientific discovery. They focus our attention on the natural world, encourage open-mindedness, diminish the self (particularly feelings of self-importance), help to accord value to the objects that are being studied, and provide a mode of understanding in the absence of full knowledge. I will flesh out implications of the role of awe and wonder in scientific discovery for debates on the relationship between science and religion. Abraham Heschel argued that awe and wonder are religious emotions because they reduce our feelings of self-importance, and thereby help to cultivate the proper reverent attitude towards God. Yet metaphysical naturalists such as Richard Dawkins insist that awe and wonder need not lead to any theistic commitments for scientists. The awe some scientists experience can be regarded as a form of non-theistic spirituality, which is neither a reductive naturalism nor theism. I will attempt to resolve the tension between these views by identifying some common ground

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    Incomplete Cd8+ T Lymphocyte Differentiation as a Mechanism for Subdominant Cytotoxic T Lymphocyte Responses to a Viral Antigen

    Get PDF
    CD8+ cytotoxic T lymphocytes (CTLs) recognize antigen in the context of major histocompatibility complex (MHC) class I molecules. Class I epitopes have been classified as dominant or subdominant depending on the magnitude of the CTL response to the epitope. In this report, we have examined the in vitro memory CTL response of H-2d haplotype murine CD8+ T lymphocytes specific for a dominant and subdominant epitope of influenza hemagglutinin using activation marker expression and staining with soluble tetrameric MHC–peptide complexes. Immune CD8+ T lymphocytes specific for the dominant HA204-210 epitope give rise to CTL effectors that display activation markers, stain with the HA204 tetramer, and exhibit effector functions (i.e., cytolytic activity and cytokine synthesis). In contrast, stimulation of memory CD8+ T lymphocytes directed to the subdominant HA210-219 epitope results in the generation of a large population of activated CD8+ T cells that exhibit weak cytolytic activity and fail to stain with the HA210 tetramer. After additional rounds of restimulation with antigen, the HA210-219–specific subdominant CD8+ T lymphocytes give rise to daughter cells that acquire antigen-specific CTL effector activity and transition from a HA210 tetramer–negative to a tetramer-positive phenotype. These results suggest a novel mechanism to account for weak CD8+ CTL responses to subdominant epitopes at the level of CD8+ T lymphocyte differentiation into effector CTL. The implications of these findings for CD8+ T lymphocyte activation are discussed

    Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA

    Get PDF
    The time course of polysome formation was studied in a long-term wheat germ cell-free translation system using sedimentation and electron microscopy techniques. The polysomes were formed on uncapped luciferase mRNA with translation-enhancing 5′ and 3′ UTRs. The formation of fully loaded polysomes was found to be a long process that required many rounds of translation and proceeded via several phases. First, short linear polysomes containing no more than six ribosomes were formed. Next, folding of these polysomes into short double-row clusters occurred. Subsequent gradual elongation of the clusters gave rise to heavy-loaded double-row strings containing up to 30–40 ribosomes. The formation of the double-row polysomes was considered to be equivalent to circularization of polysomes, with antiparallel halves of the circle being laterally stuck together by ribosome interactions. A slow exchange with free ribosomes and free mRNA observed in the double-row type polysomes, as well as the resistance of translation in them to AMP-PNP, provided evidence that most polysomal ribosomes reinitiate translation within the circularized polysomes without scanning of 5′ UTR, while de novo initiation including 5′ UTR scanning proceeds at a much slower rate. Removal or replacements of 5′ and 3′ UTRs affected the initial phase of translation, but did not prevent the formation of the double-row polysomes during translation

    COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax—a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)—induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started

    Phase I study to determine the safety, tolerability and immunostimulatory activity of thalidomide analogue CC-5013 in patients with metastatic malignant melanoma and other advanced cancers

    Get PDF
    We assessed the safety, tolerability and efficacy of the immunomodulatory drug, CC-5013 (REVIMID(TM)), in the treatment of patients with metastatic malignant melanoma and other advanced cancers. A total of 20 heavily pretreated patients received a dose-escalating regimen of oral CC-5013. Maximal tolerated dose, toxicity and clinical responses were evaluated and analysis of peripheral T-cell surface markers and serum for cytokines and proangiogenic factors were performed. CC-5013 was well tolerated. In all, 87% of adverse effects were classified as grade 1 or grade 2 according to Common Toxicity Criteria and there were no serious adverse events attributable to CC-5013 treatment. Six patients failed to complete the study, three because of disease progression, two withdrew consent and one was entered inappropriately and withdrawn from the study. The remaining 14 patients completed treatment without dose reduction, with one patient achieving partial remission. Evidence of T-cell activation was indicated by significantly increased serum levels of sIL-2 receptor, granulocyte- macrophage colony-stimulating factor, interleukin-12 (IL-12), tumour necrosis factor-alpha and IL-8 in nine patients from whom serum was available. However, levels of proangiogenic factors vascular endothelial growth factor and basic foetal growth factor were not consistently affected, This study demonstrates the safety, tolerability and suggests the clinical activity of CC-5013 in the treatment of refractory malignant melanoma. Furthermore, this is the first report demonstrating T-cell stimulatory activity of this class of compound in patients with advanced cancer
    corecore