36 research outputs found

    Rough Set-hypergraph-based Feature Selection Approach for Intrusion Detection Systems

    Get PDF
    Immense growth in network-based services had resulted in the upsurge of internet users, security threats and cyber-attacks. Intrusion detection systems (IDSs) have become an essential component of any network architecture, in order to secure an IT infrastructure from the malicious activities of the intruders. An efficient IDS should be able to detect, identify and track the malicious attempts made by the intruders. With many IDSs available in the literature, the most common challenge due to voluminous network traffic patterns is the curse of dimensionality. This scenario emphasizes the importance of feature selection algorithm, which can identify the relevant features and ignore the rest without any information loss. In this paper, a novel rough set κ-Helly property technique (RSKHT) feature selection algorithm had been proposed to identify the key features for network IDSs. Experiments carried using benchmark KDD cup 1999 dataset were found to be promising, when compared with the existing feature selection algorithms with respect to reduct size, classifier’s performance and time complexity. RSKHT was found to be computationally attractive and flexible for massive datasets

    Transport properties of one-dimensional interacting fermions in aperiodic potentials

    Full text link
    Motivated by the existence of metal-insulator transition in one-dimensional non-interacting fermions in quasiperiodic and pseudorandom potentials, we studied interacting spinless fermion models using exact many-body Lanczos diagonalization techniques. Our main focus was to understand the effect of the fermion-fermion interaction on the transport properties of aperiodic systems. We calculated the ground state energy and the Kohn charge stiffness Dc. Our numerical results indicate that there exists a region in the interaction strength parameter space where the system may behave differently from the metallic and insulating phases. This intermediate phase may be characterized by a power law scaling of the charge stiffness constant in contrast to the localized phase where Dc scales exponentially with the size of the system.Comment: 11 pages LaTex document with 5 eps figures. Uses revtex style file

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Plummeting Broadcast Storm Problem in Highways by Clustering Vehicles Using Dominating Set and Set Cover

    No full text
    “Vehicular Ad-hoc Networks„ (VANETs): As an active research area in the field of wireless sensor networks, they ensure road safety by exchanging alert messages about unexpected events in a decentralized manner. One of the significant challenges in the design of an efficient dissemination protocol for VANETs is the broadcast storm problem, owing to the large number of rebroadcasts. A generic solution to prevent the broadcast storm problem is to cluster the vehicles based on topology, density, distance, speed, or location in such a manner that only a fewer number of vehicles will rebroadcast the alert message to the next group. However, the selection of cluster heads and gateways of the clusters are the key factors that need to be optimized in order to limit the number of rebroadcasts. Hence, to address the aforementioned issues, this paper presents a novel distributed algorithm CDS_SC: Connected Dominating Set and Set Cover for cluster formation that employs a dominating set to choose cluster heads and set covering to select cluster gateways. The CDS_SC is unique among state-of-the-art algorithms, as it relies on local neighborhood information and constructs clusters incrementally. Hence, the proposed method can be implemented in a distributed manner as an event-triggered protocol. Also, the stability of cluster formation is increased along with a reduction in rebroadcasting by allowing a cluster head to be passive when all its cluster members can receive the message from the gateway vehicles. The simulation was carried out in dense, average, and sparse traffic scenarios by varying the number of vehicles injected per second per lane. Besides, the speed of each individual vehicle in each scenario was varied to test the degree of cohesion between vehicles with different speeds. The simulation results confirmed that the proposed algorithm achieved 99% to 100% reachability of alert messages with only 6% to 10% of rebroadcasting vehicles in average and dense traffic scenarios

    An Effective Secured Dynamic Network-Aware Multi-Objective Cuckoo Search Optimization for Live VM Migration in Sustainable Data Centers

    No full text
    With the increasing use of cloud computing by organizations, cloud data centers are proliferating to meet customers’ demands and host various applications using virtual machines installed in physical servers. Through Live Virtual Machine Migration (LVMM) methods, cloud service providers can provide improved computing capabilities for server consolidation maintenance of systems and potential power savings through a reduction in the distribution process to customers. However, Live Virtual Machine Migration has its challenges when choosing the best network path for maximizing the efficiency of resources, reducing consumption, and providing security. Most research has focused on the load balancing of resources and the reduction in energy consumption; however, they could not provide secure and optimal resource utilization. A framework has been created for sustainable data centers that pick the most secure and optimal dynamic network path using an intelligent metaheuristic algorithm, namely, the Network-aware Dynamic multi-objective Cuckoo Search algorithm (NDCS). The developed hybrid movement strategy enhances the search capability by expanding the search space and adopting a combined risk score estimation of each physical machine (PM) as a fitness criterion for ensuring security with rapid convergence compared to the existing strategies. The proposed method was assessed using the Google cluster dataset to ascertain its worthiness. The experimental results show the supremacy of the proposed method over existing methods by ensuring services with a lower total migration time, lower energy consumption, less makespan time, and secure optimum resource utilization
    corecore