459 research outputs found

    Penning trap mass measurements on (99-109)$Cd with ISOLTRAP and implications on the rp process

    Get PDF
    Penning trap mass measurements on neutron-deficient Cd isotopes (99-109)Cd have been performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN, all with relative mass uncertainties below 3*10^8. A new mass evaluation has been performed. The mass of 99Cd has been determined for the first time which extends the region of accurately known mass values towards the doubly magic nucleus 100Sn. The implication of the results on the reaction path of the rp process in stellar X-ray bursts is discussed. In particular, the uncertainty of the abundance and the overproduction created by the rp-process for the mass A = 99 is demonstrated by reducing the uncertainty of the proton-separation energy of 100In Sp(100In) by a factor of 2.5.Comment: 14 pages, 9 figure

    Search for the Radiative Capture d+d->^4He+\gamma Reaction from the dd\mu Muonic Molecule State

    Full text link
    A search for the muon catalyzed fusion reaction dd --> ^4He +\gamma in the dd\mu muonic molecule was performed using the experimental \mu CF installation TRITON and NaI(Tl) detectors for \gamma-quanta. The high pressure target filled with deuterium at temperatures from 85 K to 800 K was exposed to the negative muon beam of the JINR phasotron to detect \gamma-quanta with energy 23.8 MeV. The first experimental estimation for the yield of the radiative deuteron capture from the dd\mu state J=1 was obtained at the level n_{\gamma}\leq 2\times 10^{-5} per one fusion.Comment: 9 pages, 3 Postscript figures, submitted to Phys. At. Nuc

    Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1

    Get PDF
    The morphological diversity of galaxies is a relevant probe of galaxy evolution and cosmological structure formation, but the classification of galaxies in large sky surveys is becoming a significant challenge. We use data from the Stripe-82 area observed by the Southern Photometric Local Universe Survey (S-PLUS) in 12 optical bands, and present a catalogue of the morphologies of galaxies brighter than r = 17 mag determined both using a novel multiband morphometric fitting technique and Convolutional Neural Networks (CNNs) for computer vision. Using the CNNs, we find that, compared to our baseline results with three bands, the performance increases when using 5 broad and 3 narrow bands, but is poorer when using the full 12 band S-PLUS image set. However, the best result is still achieved with just three optical bands when using pre-trained network weights from an ImageNet data set. These results demonstrate the importance of using prior knowledge about neural network weights based on training in unrelated, extensive data sets, when available. Our catalogue contains 3274 galaxies in Stripe-82 that are not present in Galaxy Zoo 1 (GZ1), and we also provide our classifications for 4686 galaxies that were considered ambiguous in GZ1. Finally, we present a prospect of a novel way to take advantage of 12 band information for morphological classification using morphometric features, and we release a model that has been pre-trained on several bands that could be adapted for classifications using data from other surveys. The morphological catalogues are publicly available.Fil: Bom, C. R.. Centro Brasileiro de Pesquisa Fisicas; BrasilFil: Cortesi, A.. Valongo Observatory; BrasilFil: Lucatelli, G.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Dias, L. O.. Centro Brasileiro de Pesquisa Fisicas; BrasilFil: Schubert, P.. Centro Brasileiro de Pesquisa Fisicas; BrasilFil: Oliveira Schwarz, G. B.. Universidade Presbiteriana Mackenzie; BrasilFil: Cardoso, N. M.. Universidade de Sao Paulo; BrasilFil: Lima, E. V. R.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Mendes de Oliveira, C.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Sodre, L.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: Ferrari, F.. Universidade Federal Do Rio Grande.; BrasilFil: Damke, G.. Universidad de La Serena; ChileFil: Overzier, R.. MinistĂ©rio de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Kanaan, A.. Universidade Federal Da Santa Catarina. Cent.de Cs FĂ­sicas E MatemĂĄticas. Departamento de FĂ­sica; BrasilFil: Ribeiro, T.. Universidade Federal do Rio Grande do Sul; BrasilFil: Schoenell, W.. Noao; Estados Unido

    S-PLUS DR1 galaxy clusters and groups catalogue using PzWav

    Full text link
    We present a catalogue of 4499 groups and clusters of galaxies from the first data release of the multi-filter (5 broad, 7 narrow) Southern Photometric Local Universe Survey (S-PLUS). These groups and clusters are distributed over 273 deg2^2 in the Stripe 82 region. They are found using the PzWav algorithm, which identifies peaks in galaxy density maps that have been smoothed by a cluster scale difference-of-Gaussians kernel to isolate clusters and groups. Using a simulation-based mock catalogue, we estimate the purity and completeness of cluster detections: at S/N>3.3 we define a catalogue that is 80% pure and complete in the redshift range 0.1<z<0.4, for clusters with M200>1014M_{200} > 10^{14} M⊙_\odot. We also assessed the accuracy of the catalogue in terms of central positions and redshifts, finding scatter of σR=12\sigma_R=12 kpc and σz=8.8×10−3\sigma_z=8.8 \times 10^{-3}, respectively. Moreover, less than 1% of the sample suffers from fragmentation or overmerging. The S-PLUS cluster catalogue recovers ~80% of all known X-ray and Sunyaev-Zel'dovich selected clusters in this field. This fraction is very close to the estimated completeness, thus validating the mock data analysis and paving an efficient way to find new groups and clusters of galaxies using data from the ongoing S-PLUS project. When complete, S-PLUS will have surveyed 9300 deg2^{2} of the sky, representing the widest uninterrupted areas with narrow-through-broad multi-band photometry for cluster follow-up studies.Comment: 17 pages, 15 figures, paper accepted for publication by MNRA

    A dark siren measurement of the Hubble constant using gravitational wave events from the first three LIGO/Virgo observing runs and DELVE

    Get PDF
    The current and next observation seasons will detect hundreds of gravitational waves (GWs) from compact binary systems coalescence at cosmological distances. When combined with independent electromagnetic measurements, the source redshift will be known, and we will be able to obtain precise measurements of the Hubble constant H0 via the distance–redshift relation. However, most observed mergers are not expected to have electromagnetic counterparts, which prevents a direct redshift measurement. In this scenario, one possibility is to use the dark sirens method that statistically marginalizes over all the potential host galaxies within the GW location volume to provide a probabilistic source redshift. Here we presented H0 measurements using two new dark sirens compared to previous analyses using DECam data: GW190924 021846 and GW200202 154313. The photometric redshifts of the possible host galaxies of these two events are acquired from the DECam Local Volume Exploration Survey (DELVE) carried out on the Blanco telescope at Cerro Tololo. The combination of the H0 posterior from GW190924 021846 and GW200202 154313 together with the brightsiren GW170817 leadsto H0 = 68.84+15.51 −7.74 km s−1 Mpc−1. Including these two dark sirens improves the 68 per cent confidence interval (CI) by 7 per cent over GW170817 alone. This demonstrates that the addition of well-localized dark sirens in such analysis improves the precision of cosmological measurements. Using a sample containing 10 well-localized dark sirens observed during the third LIGO/Virgo observation run, without the inclusion of GW170817, we determine a measurement of H0 = 76.00+17.64 −13.45 km s−1 Mpc−1

    Schr\"odinger Holography with and without Hyperscaling Violation

    Full text link
    We study the properties of the Schr\"odinger-type non-relativistic holography for general dynamical exponent z with and without hyperscaling violation exponent \theta. The scalar correlation function has a more general form due to general z as well as the presence of \theta, whose effects also modify the scaling dimension of the scalar operator. We propose a prescription for minimal surfaces of this "codimension 2 holography," and demonstrate the (d-1) dimensional area law for the entanglement entropy from (d+3) dimensional Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z < d+2, even without hyperscaling violation, which interpolates between the logarithmic violation and extensive volume dependence of entanglement entropy. Similar violations are also found in the presence of the hyperscaling violation. Their dual field theories are expected to have novel phases for the parameter range, including Fermi surface. We also analyze string theory embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected, references added, v3: typos corrected, references added, published versio

    The strong gravitational lens finding challenge

    Get PDF
    Large-scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least tens of millions of images, and deriving scientific results from them will require quantifying the efficiency and bias of any search method. To achieve these objectives automated methods must be developed. Because gravitational lenses are rare objects, reducing false positives will be particularly important. We present a description and results of an open gravitational lens finding challenge. Participants were asked to classify 100 000 candidate objects as to whether they were gravitational lenses or not with the goal of developing better automated methods for finding lenses in large data sets. A variety of methods were used including visual inspection, arc and ring finders, support vector machines (SVM) and convolutional neural networks (CNN). We find that many of the methods will be easily fast enough to analyse the anticipated data flow. In test data, several methods are able to identify upwards of half the lenses after applying some thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without making a single false-positive identification. This is significantly better than direct inspection by humans was able to do. Having multi-band, ground based data is found to be better for this purpose than single-band space based data with lower noise and higher resolution, suggesting that multi-colour data is crucial. Multi-band space based data will be superior to ground based data. The most difficult challenge for a lens finder is differentiating between rare, irregular and ring-like face-on galaxies and true gravitational lenses. The degree to which the efficiency and biases of lens finders can be quantified largely depends on the realism of the simulated data on which the finders are trained
    • 

    corecore