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ABSTRACT

The morphological classification of galaxies is a relevant probe for galaxy evolution and
unveils its connection with cosmological structure formation. To this scope, it is fundamen-
tal to recover galaxy morphologies over large areas of the sky. In this paper, we present a
morphological catalogue for galaxies in the Stripe-82 area, observed with S-PLUS, till a mag-
nitude limit of r ≤ 17, using the state-of-the-art of Convolutional Neural Networks (CNNs)
for computer vision. This analysis will then be extended to the whole S-PLUS survey data,
covering ' 9300 deg2 of the celestial sphere in twelve optical bands.

We find that the network’s performance increases with 5 broad bands and additional 3
narrow bands compared to our baseline with 3 bands. However, it does lose performance
when using the full 12 band image information. Nevertheless, the best result is achieved with
3 bands, when using pre-trained network weights in an ImageNet dataset. These results en-
hance the importance of previous knowledge in the neural network weights based on training
in non related extensive datasets. Thus, we release a model pre-trained in several bands that
could be adapted to other surveys. We develop a catalogue of 3274 galaxies in Stripe-82 that
are not presented in Galaxy Zoo 1 (GZ1). We also add classification to 4686 galaxies consid-
ered ambiguous in GZ1 dataset. Finally, we present a prospect of a novel way to take advan-
tage of 12 bands information for morphological classification using multiband morphometric
features. The morphological catalogues are publicly available.

Key words: galaxies: fundamental parameters – galaxies: structure – techniques: image
processing – methods: miscellaneous – surveys

1 INTRODUCTION

Galaxy morphology is the study of the shapes and structural prop-
erties of galaxies. For centuries, there have been many defini-
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tions of different classes of galaxies, in an attempt to understand
the physical nature behind the differences in galaxy shapes (e.g.
Zwicky 1940; Vaucouleurs 1959; van den Bergh 1998 and refer-
ences therein). Since the first galaxy classification schemes created
from the 18th century on, by Sir William Herschel, his son Sir John
Herschel, Curtis, Edwin Hubble, among others, it was already rec-
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ognized that many galaxies (by then called nebulae) had spiral arms
while others had smooth and elliptical appearance (e.g. Herschel
1864). Even today, when many other more modern galaxy classifi-
cation schemes are available, with a wealth of sub-types (e.g. Borne
et al. 1999), the main classes, for luminous objects, remain as Spiral
(S) and Elliptical (E) galaxies.

Morphological differences often reflect the presence of con-
trasting stellar populations (Sánchez et al. 2007) and stellar kine-
matics (Edelen 1969; Wang et al. 2020), which are connected to the
galaxies’ masses and environments (Calvi et al. 2012; Crossett et al.
2014; Sarkar & Pandey 2020; Wu 2020). For example, S galaxies
are characterized by the presence of a disk, indicating rotationally
supported stellar kinematics, and they generally present blue spiral
arms, with newly born stars. Furthermore, S galaxies must have ac-
cess to a reservoir of gas to maintain their star-formation activity.
In contrast, E galaxies have, in general, more smooth morphologies
and are pressure-supported systems (though some of them seem
to display rotation; e.g., Bernardi et al. 2019), as a result of a se-
quence of, mainly, minor mergers (e.g. Kormendy et al. 2009; Naab
et al. 2009; Forbes et al. 2011). As a global rule, massive galaxies
evolve faster than the less massive ones, but this behaviour is less
pronounced when morphology is taken into account (Camps-Fariña
et al. 2020). This shows that morphology is an evolutionary key fac-
tor and, as a consequence, the study of galaxies’ morphologies al-
lows understanding galaxy evolution throughout cosmic times (e.g.
Shao et al. 2015).

Sky surveys in three or more bands have become widespread
in the last decades, which have brought a revolution, in particu-
lar, of the fields of large scale structure and galaxy formation and
evolution. Most notably, since Sloan Digital Sky Survey (SDSS;
York et al. 2000), studies evolved from using hundreds to hundreds
of thousands and millions of astronomical objects, with the explo-
ration of large volumes of the sky at once, and the massive use of
automatically obtained parameters. The methods used to perform
the classifications are also quite diverse, going from human classi-
fication of specialists (Nair & Abraham 2010; Ann et al. 2015), to
citizen science (Lintott et al. 2008, 2010; Willett et al. 2013; Sim-
mons et al. 2017), or to numerical estimation of morphology from
galaxies’ properties (Spiekermann 1992; Storrie-Lombardi et al.
1992; Walmsley et al. 2020). Nevertheless, all these methods share
a common problem: the image quality decreases as galaxies be-
come fainter and farther away, and it is highly dependent on the
resolution of the instrument, compromising a correct classification
(e.g. Pović et al. 2015). In order to mitigate these issues, methods
based on the Principal Component Analysis (PCA; Kelly & McKay
2004; Wjeisinghe et al. 2010) and/or Machine Learning (ML), are
also used to improve galaxy classification (de la Calleja & Fuentes
2004; Yamauchi et al. 2005; Huertas-Company et al. 2008; Banerji
et al. 2010; Domínguez Sánchez et al. 2018; Wu et al. 2019; Clarke
et al. 2020; Barchi et al. 2020). The prospect is for fast progress
in the next years due to Legacy Survey of Space and Time (LSST;
Tyson 2002; Axelrod 2006) in the Vera C. Rubin Observatory, The
Nancy Grace roman Space Telescope (Gehrels & and 2015) and
many others. The volume of data involved makes it unfeasible to
perform galaxy morphology using citizen science efforts only.

Thus, ML methods appeared as excellent tools to analyse As-
tronomical data, given that they can acquire valid information from
various data sets and assist in the process of decision-making.
As successful examples, ML techniques have been used to de-
tect gravitational lenses, interacting galaxies, and classify quasars
(to mention a few examples), on top of performing morpholog-
ical type classification, as previously mentioned (Freeman et al.

2013; Shamir et al. 2013; Bom et al. 2015, 2017; Ostrovski et al.
2017; Ma et al. 2019; Metcalf et al. 2019; Knabel et al. 2020). In
the last decade, a subfield of ML, known as Deep Learning (DL),
has emerged as the main technique for computer vision applica-
tions, including classification, facial recognition (Lu et al. 2017),
speech detection and characterization (Abdel-Hamid et al. 2014;
Vecchiotti et al. 2018), object segmentation, music classification
(Choi et al. 2017), as well as medical prognostics (Li et al. 2018)
and diagnostics (Hannun et al. 2019). Therefore, DL techniques are
useful to a wide range of multidisciplinary fields, including Astron-
omy.

In the astronomical specific field, DL allows the development
of models that can process complex and minimally processed (even
raw) data from various sources to extract relevant features that can
be effectively linked to other properties of interest. In particular,
Deep Neural Networks (DNNs) are high-performance data-driven
models that can even exceed humans in classification tasks (Met-
calf et al. 2019). A number of recent works have demonstrated that
DNNs can be used to identify morphological features in raw im-
ages, with minimal intervention from humans (Glazebrook et al.
2017; Farias et al. 2020; Hausen & Robertson 2020; Lanusse et al.
2018b; Cheng et al. 2019; Jacobs et al. 2019; Petrillo et al. 2019a,b;
Metcalf et al. 2019; Madireddy et al. 2019; Barchi et al. 2020).

In this paper, we present a morphological classification of
galaxies into Ss and Es, using the new Southern Photometric Lo-
cal Universe Survey (S-PLUS; Mendes de Oliveira et al. 2019).
The First Data Release (DR1) of S-PLUS covers the area of Stripe-
82 which has been extensively explored by several other surveys
and, in particular, by SDSS and GZ1. The previous results obtained
for GZ1 over the area of Stripe-82 for SDSS, are used as true ta-
bles. S-PLUS is a 12 band imaging survey covering ∼ 9300 deg2 of
the Southern sky, recently described by Mendes de Oliveira et al.
(2019). We aim to test the effect of the 12-bands compared to the
broad bands for classification. We also test the use of some of the
state-of-the-art DL architectures for computer vision and evaluate
how important it is to start our training with the neural network
weights already optimized in another dataset. Lastly, we present
our morphological classification catalogue containing 3274 galax-
ies that were not presented in previous GZ1 releases and classi-
fication for a set of 4686 galaxies considered ambiguous in GZ1
catalogue. The catalogues and additional analysis plots are made
publicly available 1.

This paper is organized as follows. Section 2 presents the data
and the definition of the different samples used in the DL process.
Section 3 and Section 4 present the DL models and the morpholog-
ical analysis techniques used in this work. Section 5 give the de-
tails of the training and validation process and Section 6 presents
the results as well as a check of our method. There, we also show
the concordance that exists between our proposed galaxy morpho-
logical classification and spectral types (as obtained from photo-z
template fitting codes). We also present correlations of morpholo-
gies with the output parameters from 2D decomposition codes such
as Morfometryka (Ferrari et al. 2015) and Galfit (Peng et al. 2002)
(using parameters such as concentration and clumpiness). Finally,
in Section 7 we present a summary and the discussion of our work
and the concluding remarks.

1 The catalogue can be downloaded in https://github.com/cdebom/
splus_morph
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Figure 1. Top: Normalized histogram of the distribution of the r-petrosian
magnitudes (rpetro) for the three sub-samples considered in our analysis (I,
II and III). The majority of the galaxies lie in the faint-end of the distribu-
tion. Bottom: Distribution of spectroscopic redshift in the current sample
(Molino et al. 2020)).

2 DATA

2.1 S-PLUS

S-PLUS is an optical survey using 12-bands (the so-called Javalam-
bre magnitude system, described in Cenarro et al. 2019a) that in-
cludes 5 SDSS-like bands and 7 narrow-bands centered on impor-
tant stellar features (the Balmer jump/[OII], Ca H+K, Hδ, G-band,
Mg b triplet, Hα, and the Ca triplet). The survey’s depth is r<20 AB
mag for the narrow bands and r<21 AB mag for the broad bands.
S-PLUS is performed with the T80-South Brazilian robotic tele-
scope located at Cerro Tololo Interamerican Observatory, equipped
with a 9.2k×9.2k e2v detector with 10 µm pixels, resulting in a
field-of-view of 2 deg2 with a plate scale of 0.55′′ pixel−1. The first
public data release of S-PLUS (DR1) covers ∼ 336 deg2 over the
Stripe-82.

We have used the full catalogue of the S-PLUS DR1 that com-
prises 3M sources including galaxies, quasars and stars (more de-
tails can be found in Nakazono et al, submitted). Specifically, we
employed two quantities of that catalogue in order to define the
galaxy sample: the magnitude in the Petrosian region in r-band
(rpetro) and the probability of an object to be a galaxy (probgal). The
interval criteria for these two quantities are:

rpetro < 17 AB mag and probgal ≥ 0.6

Following these selection criteria, image stamps for the se-
lected objects were created in the 12 S-PLUS filters for all the 170
fields in DR1. We kept the same standard stamp size for all images

of 256×256 pixels22. This image size represents a good compro-
mise between the size of the object and the stamp’s dimension, to
diminish the noise arising from the background in the fitting pro-
cedure and the inclusion of neighbouring galaxies. The stamps, in
fits format, directly inputted in the pipeline. Thus, we avoid any
loss of information due to format conversion or data compression.
As shown in the top panel of Figure 1, the majority of the galaxies
falls into the faint-end of the brightness regime, assuring that all the
visible galaxy light fall within the image size. Moreover, the DNN
algorithm used in this contribution requires the inputs to have the
same size. Figure 2 presents an example of the 12 stamps for an E
(top panels) and S (bottom panels) galaxies.

For every image, we also perform a cleaning process in which
foreground stars and other objects are removed. We make use of
Galclean3, which replaces bright sources with the noise distribu-
tion of the background. However, for the DNN method, we still use
the original images stamps during training, validation and classi-
fication. As in some cases the masked image, resulting from the
cleaning process, may contain artifacts (due to the masking pro-
cedure) and compromise the performance of the DL analysis. In
fact, the DL algorithm may recognise the artefacts as an impor-
tant element of image-recognition whether the features are quite
large compared to the galaxy image, or a similar artefact (as a satu-
rated masked star) is present in several images. Nevertheless, these
masks are crucial for the morphometric processing (see Section 4).

2.2 Galaxy Zoo 1

GZ1 was a citizen-science project that ran from July 2007 until
February 2009 and involved hundreds of thousands of volunteers to
visually classify SDSS images in the GZ1 platform . It allowed not
only the classification of nearly 900,000 objects (Lintott et al. 2008,
2010), but also the discovery of other classes of objects, as, for ex-
ample, green peas (Cardamone et al. 2009; Lintott et al. 2008), and
supported a number of follow-up studies, such as those on galaxy
spins (Land et al. 2008; Slosar & White 2009) and mergers de-
tection (Holincheck et al. 2016). In this paper, we use the wealth
of data provided for galaxy classification by GZ1, to train a new
galaxy S-E classification for S-PLUS objects. We selected only
galaxies with known spectroscopy (from SDSS DR7), for which
the so-called debiased classification (Bamford et al. 2009) from
GZ1 is available (Lintott et al. 2010)4.

In fact, a classification bias is present in GZ1 (Bamford et al.
2009; Lintott et al. 2010), due (i) to the sample selection (mag-
nitude limits and the small volume at low redshift) and (ii) to
signal-to-noise ratio and resolution effects. GZ1 provides four main
classes: ‘S’, ‘E’, ‘don’t know’ and ‘merger’. The classification
scheme assumes that galaxies that present spiral arms or are edge-
on are classified as S while the remaining are considered E galaxies.
Faint and small objects, though, tend to be classified as early-type
galaxies, since spiral features are hard to be identified in such cases.

Bamford et al. (2009) developed a method to debias the classi-
fication for galaxies of known luminosities, sizes and distances, by
assuming that their morphological fraction does not vary with the
survey depth in bins of galaxy parameter space (i.e. bins of redshift,

2 The image cutout tasks can be found in this GitHub repository:
https://github.com/lucatelli/splus-tools.
3 https://doi.org/10.5281/zenodo.4004571 (Ferreira et al. 2017; de Alber-
naz Ferreira & Ferrari 2018).
4 Data obtained from https://data.galaxyzoo.org/, Table 2, for reference.
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Figure 2. Example of image-stamps showing an E galaxy (top panels) and a S galaxy (bottom panels) in the 12 filters of S-PLUS. The last two panels show
the gri colour images.

luminosity and size). To avoid problems due to the low volume at
low redshift, the first redshift bin, for which the debiasing technique
is applied, starts at z ≥ 0.03. Unfortunately, the debiasing technique
leads to the non-classification of several objects. It is important to
note that the classification bias is not due to volunteers’ involve-
ment in the study, but to the limitation of the data.

The merger class, which comprises less than 1% of the clas-
sified galaxies and requires a detailed study to consider projection
effects, will be studied in a separate paper (Mendes de Oliveira et
al. in prep.). A class that was not considered in the GZ1 project is
that of the lenticular (S0) galaxies which, in practice, fall in the S
or E classification. Even for an expert, it is hard to disentangle a
face-on S0 galaxy from an E galaxy or an edge-on S0 galaxy from
and edge-on S. Bamford et al. (2009) found that the majority of
the S0 galaxies fall into the E galaxy class, and they suggest that
this class is referred to as early-type galaxies. In this work, we will
follow this suggestion, leaving to a subsequent S-PLUS paper the
challenge of finding bonafide S0 galaxies (Lucatelli et al. in prep.).

2.3 Deep Learning Sample Definitions

In this work, we use the debiased S and E GZ1 samples matched
with S-PLUS DR1 as a training and validation set (sub-sample I);
the GZ1 objects that, after the application of the debiasing tech-
nique, have no classification and matches S-PLUS DR1, consti-
tute the ambiguous set (sub-sample II); and S-PLUS galaxies with
no counterparts in the GZ1 sample are our blind set (sub-sample
III). In Figure 1, we show the histogram of the distribution of rpetro

and zspec for each sub-sample. More details about these three sub-
samples are given below and are also summarized in Table 1.

2.3.1 Training and Validation Set - I

This sub-sample comprises all objects classified by the GZ1 project
as ‘S’ or ‘E’ in Stripe-82 (in total, 4232 objects). We use these
objects to train, validate and test the deep learning network. The
distribution in magnitudes of this galaxy sub-set is indicated by the
blue line histogram of Figure 1 (top panel).

2.3.2 Ambiguous Set - II

Considering the debiasing technique (Bamford et al. 2009), we
found ∼ 52% of the galaxies (4686 objects) in our S-PLUS DR1
sample classified as ambiguous in GZ1. It is worth noticing that in
the distribution of the r band magnitude, as shown by the green line
histogram in Figure 1, the galaxies are in average fainter than in the
other two sub-sets (I and III). Consequently, it is harder to identify

the presence of spiral arms, as pointed out by Bamford et al. (2009)
and Lintott et al. (2010).

2.3.3 Blind Set - III

The third sub-sample (III) represents the data that does not have
classification provided by GZ1. The final number of objects in this
set represents ∼ 26% (3274 objects) of the total galaxy sample. We
also refer to this sample as unclassified. Since this group is ‘uncer-
tain’ (i.e. it has ∼ 40% probability of being a star), we made a visual
cleaning on the image stamps. We also checked the quality flag QF
from Morfometryka (Ferrari et al. 2015; see Section 4.1) in order
to remove possible non-galaxy objects. In conclusion, only 14%
have QF , 0, which might be caused by, for example, ‘non-galaxy’
objects, foreground stars close to the galaxy, or errors during the
Sérsic fit (see Ferrari et al. (2015) for more details about QF). Such
objects, as well as the objects identified as ‘non-galaxy’ during the
visual cleaning, have been excluded from this sub-sample, render-
ing it low contaminated by outliers. Note that this sub-sample’s
redshift distribution is shifted toward lower redshifts with respect to
the other two sub-samples (see Figure 1, lower panel). As explained
in Section 2.2, only galaxies with z ≥ 0.03 have been included in
GZ1.

3 DEEP CONVOLUTIONAL NEURAL NETWORKS

3.1 Convolutional Neural Networks for Image Classification

Convolutional Neural Network (CNN) algorithms are a class of
DNN techniques that makes use of a particular type of layers named
convolutional layers. These layers were inspired in how animals vi-
sual cortex perceive patterns (Hubel & Wiesel 1962; LeCun et al.
2015). They consist of kernels that are convolved with the data as
they flow through the DL model. The DNNs for pattern recognition
in images are commonly based on several stacked convolutional
layers among with dimensionality reduction layers (or pooling lay-
ers) and regularization layers (e.g., dropouts or batch normaliza-
tions, see Goodfellow et al. 2016; Chollet 2018). The trained ker-
nels act as filters specialized in the identification of a specific pat-
tern in the data. Those layers are later connected to traditional fully
connected neural network layers that take into account the particu-
lar features from the previous layers and outputs the predicted class
based on a softmax function (Goodfellow et al. 2016). This func-
tion returns a vector with the probabilities of the respective poten-
tial classes.

In their notorious paper, LeCun et al. (1998) introduced the
first widely recognized successful application of these convolu-
tional layers for image identification of handwritten digits. Since

MNRAS 000, 000–000 (0000)
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Table 1. Sample Description. In our sample the data are separated into three groups as indicated below.

Name Number of objects Description

I 4232 S and E galaxies matched with GZ1 in S-PLUS DR1 after magnitude cut
II 4686 Ambiguous galaxies matched with GZ1 in S-PLUS DR1
III 3274 Remaining unclassified galaxies in S-PLUS DR1

that, CNNs have become the primary technique on this field, and its
several based architectures won the main computer vision commu-
nity competitions (see, e.g. Russakovsky et al. 2015; Krizhevsky
et al. 2012), making use of several different CNN based models
such as VGG (Simonyan & Zisserman 2014), ResNet (He et al.
2016) and Inception models (Szegedy et al. 2015, 2016).

Many patterns of interest in astrophysics can be visually as-
sessed. This spurred the use of CNNs in the field, as the aforemen-
tioned examples of pioneering galaxy morphological classification
in Section 1. One of their major successful visual pattern recog-
nition applications in astrophysical data was the search of Strong
Lensing systems. This task has been widely explored both in sim-
ulated and real data (see, e.g. Bom et al. 2017; Jacobs et al. 2017;
Lanusse et al. 2018a; Petrillo et al. 2019a,b; Cai et al. 2020) and
they also have their own computer vision challenges (Metcalf et al.
2019; Metcalf 2021), which were both won by CNN-based archi-
tectures. It is worth noticing that the model with the best perfor-
mance in the latest Strong Lensing Challenge its a variation of a
family of CNN models known as EfficientNet (Tan & Le 2019)
that represents the state-of-the-art in one of the most acknowledge-
able datasets in computer vision: the ImageNet (Deng et al. 2009).
We make use of this kind of model in this contribution as our base
model for addressing the morphological classification task.

3.2 EfficientNet Models

EfficientNets are a family CNN based models that were scaled and
optimized considering a computational resource constrain and ac-
curacy. In its original paper Tan & Le (2019) proposes to start with
a model similar to a mobile CNN (Howard et al. 2017). A multi-
objective neural architecture search (Tan et al. 2019) is performed
into this initial model to optimize both accuracy and Floating-point
Operations Per Second (hereafter FLOPs). The resulting model is
the base model known as B0. This approach, known as Auto Ma-
chine Learning (henceforth AutoML), tests several Neural Network
hyperparameters combinations to optimize the Machine Learning
model, and it is fully described in the previous references. After the
B0 model is defined, Tan & Le (2019) proposed a set of scaling re-
lations to define the width of the layers, i.e. how many kernel units
in a layer, the depth, the convolutional blocks and layers and also
the resolution of input images. Therefore, constraining the space
of DNN hyperparameters to be explored in the optimization pro-
cesses. The intuition for these quantities is that if deeper networks
are more prone to learn complex features, on the other hand, they
are also more likely to find vanishing gradients, while wider net-
works and high-resolution inputs are expected to learn fine-grained
features (Zagoruyko & Komodakis 2016; Howard et al. 2017). In
this case, the trade-off is that if one defines an excessively wide net-
work, it becomes harder to learn the complex features. It is worth
mentioning that deeper networks are also expected to saturate in
accuracy (He et al. 2016), thus going deeper might result in unnec-
essary computational time and other convergence issues.

These scaling relations can be defined as follows:

depth: d = αφ

width: w = βφ

resolution: r = γφ.

(1)

φ is an integer named compound coefficient. The coefficients α, β,
and γ are optimized by a small grid search in the base model, i.e.
with fixed φ = 1. The number of FLOPS scales with d · w2 · r2

or, in terms of Equation 1, with (α · β2 · γ2)φ. Thus, to constrain the
FLOPs to 2φ, the coefficients α, β, and γ are subject to the following
constraints:

α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1,
(2)

Under this procedure, one may define a family of EfficientNets
from the base model B0 to any BN where φ = N. It is worth notic-
ing that scaling up an already optimised CNN is a process orders
of magnitude less computationally intensive than a fully neural ar-
chitecture search. This might become prohibitive for many avail-
able computer facilities if one has a fixed computation time budget
since the number of parameters is of the order of millions or dozen
of millions.

For the Morphological Assessment of galaxies, we made use
of the EfficientNet B2 model architecture proposed in the origi-
nal Tan & Le (2019) paper. This network architecture was applied
to identification of Strong Lensing (Metcalf 2021) winning the II
Strong Lensing Classification Challenge. The B2 was compared
with other EfficientNet models (B0 − B7) using our baseline in-
put set of g, r, and i bands for morphological classification. The
results were similar in terms of accuracy except for the networks
with higher numbers of parameters which are the ones more prone
to overfit. The B2 model was adapted for our problem: the top
layer was modified to output the probability of being a S or an
E galaxy. Another significant change was the use of recent state-
of-the-art adaptive learning rate optimiser named Rectified Adam
(RADAM Liu et al. 2019). The authors of RADAM have shown
empirically that the rectification term applied in the conventional
ADAM (Kingma & Ba 2014) optimiser leads to a faster, more sta-
ble optimisation which is less sensitive to the choice of hyperpa-
rameters such as learning rates. The EfficientNet models are among
the highest-ranked in terms of performance for image classification
tasks, given an informative (in terms of variety) and sufficiently
large structured image dataset as presented by Tan & Le (2019),
outperforming many of the aforementioned computer vision data
challenge winners.

4 GALAXY MORPHOMETRY

Alongside the CNN approach (Section 3), an additional analysis
has been performed in this work to recover the morphometric pa-
rameters for all three sub-samples and compare their distribution.

MNRAS 000, 000–000 (0000)
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Such comparison is a sanity check of the CNN classification, since
we are able to evaluate whether the same behaviour of the parame-
ters, recovered using Morfometryka (hereafter MFMTK, see Fer-
rari et al. 2015) in the training and validation set, is present in
the ambiguous and blind sample. Moreover, galaxies of different
morphologies present different values of morphometric parameters
(Conselice 2014) such as concentration and entropy. Thus, calcu-
lating the distribution of such parameters for the E and S galaxies
classified by the CNN can link the galaxy morphology from com-
puter vision to its structure and physical properties from morphom-
etry. MFMTK and the main morphometric parameters used for this
analysis are described in the following sections, while results of
this analysis are presented in 6.4.

4.1 Morfometryka

The morphometric processing is performed using Morfometryka
(Ferrari et al. 2015), and it includes photometric (geometric
and Sérsic parameters) and morphometric measurements, e.g.
CASGM-σψH system. All measurements computed by MFMTK
are done in an automated way, which only needs the image and
its PSF as inputs. For the analysis and comparison of morphome-
tric parameters, we select the concentration and entropy measure-
ments, since they are more stable in relation to image resolution and
signal-to-noise (Ferrari et al. 2015; de Albernaz Ferreira & Ferrari
2018) . A more general study of all morphometric and photomet-
ric parameters recovered with MFMTK is left to another dedicated
work, where a more detailed analysis will be conduced using Ma-
chine Learning techniques (Lucatelli et. al, in prep).

4.2 Concentration and Entropy

Concentration (C) (Kent 1985; Bershady et al. 2000) is widely used
to quantify how the brightness of a galaxy is distributed within
it. C is defined as the ratio between two percentile radii of the
galaxy. One example is the C index defined considering the radii
that contains 80% and 20% of the total luminosity; in that case,
C ∝ R80/R20. In MFMTK, there are different C definitions:

C1 = log10

(
R80

R20

)
, C2 = log10

(
R90

R50

)
. (3)

Generally, E galaxies, compact galaxies and classical bulges have
higher concentration values than S, disk-like galaxies or pseudo-
bulges.

Complementary to C, the entropy (H) of a galaxy image (Fer-
rari et al. 2015) quantifies how the light is distributed in the image.
The entropy adopted by MFMTK is based on Shannon entropy,

H = −
1

Hmax

K∑
k

p(Ik) log
[
p(Ik)

]
, Hmax = log K. (4)

where Ik is the intensity value of I at position k and p(Ik) is its prob-
ability of occurrence. Hmax is the maximum value of entropy, which
means that all pixels have the same probability : p(Ik) = 1/K with
K being the number of bins. An image with a homogeneous dis-
tribution of pixel values will have higher entropy than an unequal
distribution (Bishop 2007). In this sense, E galaxies may have a
lower H in relation to S galaxies.

Table 2. Short description of the models used.

Name Description

A g, r, i bands. No pre-training
B g, r, i bands, Model pre-trained with ImageNet
C 5 broad bands, g, r, i, u, z. No pre-training
D 5 broad bands and 3 narrow bands, F515, F660, F861. No pre-training
E 12 bands: 5 broad bands and 7 narrow bands. No pre-training

5 TRAINING AND VALIDATION

5.1 Preprocessing

The images were normalized, this is a useful practice for neural
network training convergence (Goodfellow et al. 2016). A simple
image contrast adjustment was performed saturating the bottom 1%
and the top 1% of all pixel values. We randomly inspect the images
to check for quality or issues. In Section 7.2 we present some panels
containing image examples. In the unlabeled sample, we also had
to define a slightly different saturation level as this sample has more
galaxies in the faint end and some close to saturated stars. For train-
ing purposes, we made use of data augmentation techniques. This
procedure is known to increase DNN performance (see, e.g., Chol-
let 2018). The augmented sample was not used in the validation
samples or any network quality metrics, only to enhance the train-
ing. To define the augmented sample, we use 180 degree rotation,
horizontal flip and vertical flip.

5.2 Imbalanced data treatment

The train/validation dataset is obtained by cross-matching the
S-PLUS catalogue with the debiased morphological catalogue of
GZ1, as explained in Section 2.2. It contains 71% of S galaxies and
29% Es, reflecting the early-type to S ratio at z ' 0.03 of the GZ1
datasets. In fact, such ratio is taken as a baseline estimate in the pro-
cess of debiasing, which assumes that this fraction does not evolve
with redshift for bins of fixed luminosity and size (see Appendix A
of Bamford et al. 2009 for a detailed explanation of the debiasing
technique).

We present the distribution of both classes in Figure 3. Due
to the data imbalance between the two classes we apply a standard
procedure5 to weight each class. We define the weights of a certain
class α as:

wα =
N

mNα

, (5)

where N is the number of objects in the training set, Nα is the num-
ber of objects in the class α and m is the number of classes. The
weights are applied in the objective function, so each class has the
same impact in the optimization process. Therefore, the procedure
prevents the model to bias towards the class with more samples
and loose generalization capacity. This is particularly important in
problems where one class has orders of magnitude more samples
than the other (Sun et al. 2009).

5 see, e.g., https://www.tensorflow.org/tutorials/structured_
data/imbalanced_data
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Figure 3. Distribution of galaxy labels in the train/validation sample: i.e.
number counts of galaxies classified as E or S in the unbiased GZ1 data
release, present in the S-PLUS DR1 data release, see Section 2.2.

5.3 Training

We used the dataset I in Table 1 described in the previous sections,
with the true GZ1 for training and validation purposes. We made
use of a standard backpropagation procedure to minimize a cost
function, also named as loss. This function is defined to be a cross-
entropy function:

H(p, q) = −
∑
x∈X

p(x) log q(x), (6)

where p(x) is the galaxy labelled probability of an object pertaining
to a certain class (either 0 or 1 in our case) and q(x) is the probabil-
ity predicted by our DL method. We split the dataset in 5 folds to
perform a cross-validation procedure (Moreno-Torres et al. 2012).
Thus we define 5 different training and validations sets containing
80% and 20% of the dataset I, respectively. We define the first fold
as validation and the other 4 as the training set for the first set. After
the training procedure, we redefined the validation set as the second
fold and the others as training. It is worth mentioning that the train-
ing subset for each fold is the only one used to update the network’s
weights in the backpropagation algorithm (Ruder 2016). To decide
which is the best network set of weights, we perform 50 epochs
and choose the weights defined in the epoch with lower validation
loss. The latter would be the weights, to be given to the network,
that better generalize the results for a given validation set, unknown
to the network training procedure. The cross-validation method de-
fines one network configuration per training/validation split, which
makes possible to evaluate how robust is the training for different
sets. Additionally, this method guarantees that each object will be
used at least once in the test set.

Using the architecture defined in Section 3.2, we set up differ-
ent models varying the kind of input or the use of preset weights
initialization. The models are described in Table 2. The model A
makes use of three broad bands g, r and i in a traditional 3 chan-
nel scheme for image classification in data science problems (Deng
et al. 2009) using a uninformative weights initialization (Glorot &
Bengio 2010). To evaluate the effect of pre-trained weights initial-
ization, we define model B using the same 3 broad bands. This
model also starts with weights derived from pre-training from Im-
ageNet dataset. This idea is known as transfer learning (Yosinski
et al. 2014). It consists of using a given model (that is, an archi-

tecture and its weights) that learned in a given task/data domain, in
our case classifying the ImageNet classes, as a base model for an-
other task/data domain. This method relies on the hypothesis that
a sufficiently large and well fitted DL model is effective in learn-
ing features and some of those features can be shared among tasks
like different sets of image classification problems. We let all the
weights free to be optimized in our training, which means that we
only used the pre-trained weights to initialize the network. The
subsequent models do not use the pre-trained initialization since
they are defined in a different number of channels than the origi-
nal ImageNet. Model C makes use of all 5 available broad bands
g, r, i, u, and z. Model D is set to use the aforementioned broad
bands and also 3 narrow bands with higher signal-to-noise ratio,
namely F515, F660 and F861. These bands can retain informa-
tion of important stellar features, such as Hα, Mgb triplet, and Ca
triplet. Yet those emission lines fall into the corresponding filter
only till a certain redshift (for example, the Hα line falls into the
F660 filter only until z ' 0.015). Given the redshift distribution of
the galaxies in this sample (zmax ' 0.3, zpeak ' 0.05); see the lower
panel of Figure 1), this is not the case for the majority of the targets,
and the differential factor for the F515, F660 and F861 images is
the higher S/N among the narrow band images (see Figure 2). Fi-
nally, model E makes use of all available broad and narrow bands
from S-PLUS (a total of 12).

The training plots are presented in Figure 4. The left panel
presents the optimisation in the training dataset, and the right panel
presents the training performance in the validation dataset. All the
models have a satisfactory optimisation in terms of training loss.
However, the model with pre-trained ImageNet weights did per-
form better in terms of median loss in all folds. The baseline model
with 3 bands presented a high instability in the training process and
did not converge to a minimum in all the folds; thus, it presents a
high variance for training loss in the folds. On the other hand, the
models with 5 and 8 bands had a more stable convergence and per-
formed similarly. It is worth noticing that, regarding the validation
loss, none of the models present strong overfitting considering their
variability in the folds. However, by looking into individual folds,
we observed that the models with 5 or more bands tend to overfit
after ≈ 40 epochs. For the following analysis, we use the models at
the epoch with lower loss in the validation sample.

It is also worth noticing that all considered configurations, ex-
cept the pre-trained with ImageNet, optimised the loss function in
early epochs. However, the validation loss needed several epochs
more to reach a comparable low value indicating that the DNN
learned how to generalise for a dataset different from the one used
in training (e.g. the validation dataset).

6 RESULTS

6.1 Model Performance

The model performance is evaluated only in the validation sets, i.e.
the set that was not used to optimize the DNN weights during the
training. The uncertainty in each metric is derived by the k-folding
procedure described in the previous section. We consider as metrics
the purity (or precision), completeness (or recall), and false alarm
rate (or false positive rate). The precision for the sample of galaxies
of a class α is defined as:

precision =
|{Galaxies in α} ∩ {Galaxies classified as α}|

|{Galaxies classified as α}|
. (7)
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Figure 4. The objective function results for: A, C, D and E are the results for the 3-,5-,8-, and 12-band models, respectively, all without ImageNet weights.
Model B is a 3-band model used ImageNet pre-trained initialization weights. The shaded regions represents the standard deviation in the folds due to cross-
validation procedure.

The recall can be defined as:

recall =
|{Galaxies in α} ∩ {Galaxies classified as α}|

|{Galaxies in α}|
. (8)

The false alarm rate is:

false alarm =
|{Galaxies not in α} ∩ {Galaxies classified as α}|

|{Galaxies not in α}|
.

(9)

As the DNN outputs a number representing each class’s score (E
or S), to obtain a precision and recall, it is necessary to define a

threshold t. If a given probability of a class in our validation dataset
is above the threshold (i.e., p > t), we consider the object as part of
this class. To define an optimized threshold and also to assess the
performance, we plot the precision and recall and the Receiver Op-
erating Characteristic (ROC, i.e. recall and false alarm rate) curves
for any threshold in the range [0, 1]. The Area Under the Curve of
the ROC curve (AUC) is an intuitive measurement of classification
performance: a perfect classifier would have AUC = 1. In contrast,
a random choice in a balanced dataset would have AUC = 0.5. The
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perfect classifier is the one that approaches the point (0, 1), i.e. 0%
false positives for 100% completeness.

It is worth noticing that all models presented here have a high
performance in terms of AUC, with median AUC > 0.98. In Fig-
ures 5 and 6 we present the ROC for models A to E. For E galaxies,
we noticed that all models, except the one with 12 bands, have sim-
ilar performance, close to AUC = 0.99 with ≈ 0.01 sigma. The
model pre-trained with ImageNet is more stable in terms of AUC,
and this model is the one that gets closer to the perfect point (0, 1).
The ROC in the S case favours the aforementioned pre-trained
model, but also the 5- and 8-band models have a similar perfor-
mance. We see that the model with 3 bands only has a higher error
in AUC and tends to deviate from the (0, 1) point if compared to
the others.

The figures of precision and recall present a more clear pic-
ture of the models. We still see that the model with 3 bands only
with no pre-training performs worst in the median curve and has
a high average precision error compared to others. The 12 band
model presents no gain compared to 5 or 8 bands. The models with
5 broad bands and 8 bands have similar results. However, the first
has a very stable result on average precision for S galaxies. The
most notable difference, except for the aforementioned model, is
that the model with 3 bands only seems to be more sensible to
the trials between test and validation for E galaxies. The 5-band
model also gets closer to the perfect-classifier point (0, 1) than the
8-broadband model for E galaxies. However, the results show that
8- and 5-band differences are marginal. We present a more detailed
picture considering the deviations in the five K-folds for the pre-
trained model, the result for our base model with 3 bands only, and
the 8-band model in Figure 6.

Considering these results, we define the best threshold to be
the one closest to the point (0, 1) in AUC. We present our results for
the confusion matrix in Figure 7 using the pre-trained network. This
model consistently presented a high performance with high stabil-
ity in both ROC and precision-recall curves and required fewer
inputs than the other similar model with 8- or 5-bands. The con-
fusion matrix represents the overall performance of true positives,
true negatives, false positives and false negatives. Considering all
the K-folds, we misclassify 15±2 objects in our validation sample,
representing less than 2% (and therefore accuracy of 98%) for any
object with r < 17 AB mag, in all redshift ranges considered.

6.2 Application to ambiguous and Galaxy Zoo unlabelled
dataset

We apply our best model, EfficientNetB2-like architecture using
pre-trained weights from ImageNet in three bands to the other two
samples. In Figure 8, we present a histogram that gives the score
distributions for the three datasets: training and validation, ambigu-
ous, and unclassified/blind samples. We emphasize that the dis-
tributions are qualitatively similar; the model presents high confi-
dence in the non E probability end. The ambiguous sample presents
a more smooth distribution which might be an indicator that this
sample presents a major challenge to the DNN.

6.3 Testing the S-PLUS E-S classification: comparison with
other morphological classifications

Figure 9 shows the comparison between results from this work
with other morphological classification of Stripe-82, based on DL
(Domínguez Sánchez et al. 2018; left column) and visual morpho-
logical classification (Nair & Abraham 2010; right column). The

first row shows the results for the training-validation set, the sec-
ond row, those for the ambiguous set, and the last row, those for
the blind set. In the left column, the histogram showing the distri-
bution of the galaxies classified as E has a peak at T-Type = -2.5
and generally the distribution falls below T-Type < 0, for the three
cases. Galaxies classified as S have a broader distribution, which
peaks around T-Type = 4.5 for the training-validation and blind
sample. Yet, some galaxies classified as S have a T-Type lower or
around zero, due to the difficulties of discriminating the presence
of spiral arms in faint and higher-redshift galaxies, as discussed
in Section 2.2. This effect is stronger in the ambiguous class, ex-
emplifying how this group of galaxies, if taken into consideration,
would lead to an incorrect S-to-E galaxy ratio in the local Uni-
verse, and were therefore excluded during the debiasing process
(Bamford et al. 2009). The right column of Figure 9 shows the his-
tograms comparing the distributions of the E-S classification of this
paper with respect to the T-Type visual classification from Nair &
Abraham (2010), for the training-validation set, the blind, and the
ambiguous sets. Unfortunately, when matching Nair & Abraham
(2010) and the catalogue presented in this work, the sub-sample of
objects in common is not large (≥ 100 objects). Even so, there is a
clear agreement between the two classifications, with the only ex-
ception of T-Type = 0 (i.e., the S0 class), which is hard to classify
since it is not explicitly considered in the classification procedure
of this paper and it will be implemented in Lucatelli et al. (in prep).

6.4 Testing the S-PLUS E-S classification: morphological
parameters of the newly classified galaxies

In order to evaluate how the morphometric features would be dis-
tributed in the sample, we obtained measurements of C and H.
We compare these features to what we would expect for S and E
galaxies, given what is already known in the literature. The deter-
minations of these quantities for the sub-samples in Table 1 are
compared in Figure 10. This Figure shows the C2-H morphometric
diagrams for the three sub-samples (I,II and III), and the plots are
colour coded according to the galaxy classification. All left plots
refer to measurements only in the r-band and all plots on the right
are made taking the mean of C and H in different filters. The top of
Figure 10 indicates the distribution of C and H for the training and
validation samples, while the middle and bottom of Figure 10 refers
to the same analysis but for sub-samples II and III, respectively. In
these plots, the E and S classifications are the results of this work.

We note that, given that the E-S classification of this paper
is trained using GZ1, i.e. visual classification based on the shapes
of the objects (with or without spiral arms) and the morphometric
parameters also measure the monochromatic light distribution, this
plot turns into a sanity check. The two methods, even if based in
different techniques (classifications done by humans vs machines)
recover the form of the objects, without taking into consideration
the colour or stellar population of the galaxy.

The sub-sample measurements show a clear distinction be-
tween classes E and S, i.e., the centres of each contour lines are
well separated. On the other hand, when looking to the ambigu-
ous sub-sample, in the middle of Figure 10, the centres of the two
distributions are not well separated. This reflects the fact that these
objects are classified as uncertain, as it is clearly seen in the rela-
tion between C and H. Finally, for sub-sample III, at the bottom of
Figure 10, the centre of E and S distributions are better separated
in relation to the sub-sample II, nevertheless, with a larger scatter
than the classification from GZ1 (sub-set I at the top).

Subsequently, when considering the same comparisons but us-
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Figure 5. Results for A, C, D and E for the 3-, 5-, 8- and 12-band models, respectively. Model B used pre-trained ImageNet weights initialization with 3 bands.

ing the mean of C2 and H in different filters (instead of using the
r-band), we have a reduced scatter in the data. Still, the discrimi-
nation between ‘E’ and ‘S’ in sub-sample II is worst than for the
others. The general conclusion is that the shape of the C2 −H mor-
phometric diagrams are similar to what is already shown in the lit-
erature (Ferrari et al. 2015; Conselice 2014) and when we use the
classification of the deep-learning approach adopted here, validat-
ing the results obtained in this work.

Finally, the left and central panels of Figure 12 show the (g−r)
and (u − z) normalized colour distributions of the galaxies, colour
coded according to the galaxy classification, for the three sub-
samples (I, II and III). The two galaxy populations, E and S, present

the expected colour bimodality, with classified E’s being redder
than S’s. The third column shows the distribution of the bayesian
spectral type (Tb) parameters, as obtained by Molino et al. (2020).
Briefly speaking, to derive a photometric spectral measure (photo-
z), from the galaxies’ SED, it is necessary to fit, together with the
redshift value, the most probable spectral type of the galaxy. The
redshift is in fact determined from the shift of the observed SED
with respect to galaxy templates used in the fitting routine. In this
case, the results are obtained using BPZ (Benítez 2011) and are pre-
sented in Molino et al. (2020). The distribution of the Tb parameter
shows that when the whole galaxy SED is taken into account, the
colour bimodality of E-S galaxies is not so clear anymore, and the
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Figure 6. Results for A and D with the 3-, 8-band models, respectively. Model B used pre-trained ImageNet weights initialization with 3 bands. The shaded
regions represents the standard deviation in the folds.

complexity of the relation between galaxy morphology and the stel-
lar population is brought to light: quenching effects, as well as the
influence of star formation bursts become detectable, using a full
SED fitting or some specific narrow bands. This plot also reveals
the potential of S-PLUS survey in studying galaxy evolution and
formation.

7 DISCUSSION AND CONCLUDING REMARKS

7.1 Summary

In this paper, we use the state-of-the-art of DL methods for im-
age classification and present a model for predicting astrophysical
features of nearby galaxies in Stripe-82, observed within S-PLUS.
Specifically, we recover their morphology, assigning each object
a probability of being a S or an E galaxy, using artificial intelli-
gence. We also evaluate the use of 12 bands presented in S-PLUS.
Thus, we use different combinations of filters (broad and narrow),
to check the effect of the inclusion of narrow bands in the analysis.
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In fact, morphological classification using DL algorithms has been
already implemented in several works (Domínguez Sánchez et al.
2018; Barchi et al. 2020; Tuccillo et al. 2016; Khalifa et al. 2018;
Dieleman et al. 2015; Zhu et al. 2019; Dai & Tong 2018; Gupta
et al. 2020; Vega-Ferrero et al. 2020). In this work, we investigate
the gain/loss of adding narrow-band images to perform the clas-
sification. We also evaluate the use of weights extensively trained
in other reference computer vision dataset to initialize the DNN.
We deliver a new catalogue of galaxies morphologies, including a
classification for galaxies considered ambiguous or unclassified in
GZ1.

7.2 A New catalogue of Galaxy Morphology

The final catalogue we developed can be divided into three sam-
ples. The first was used as training and validation and it was al-
ready classified in GZ1 catalogues. Therefore, this sample acts as a
quality control sample. This sample was crucial to develop working
and high performance DNN models in S-PLUS. The model created
from this set will pave the path towards the morphological classifi-
cation in the whole S-PLUS footprint.

The second sample contains the galaxies considered ambigu-
ous in GZ1. Our assessment using independent features to analyze
the data suggests that these objects are indeed ambiguous in the pa-
rameter space of the morphological features used (C and H). How-
ever, we do see some degree of difference in the E and S groups
classified by the current DL method. It is worth noticing that this
group has more objects in the faint end than the control group.

The last group contains the objects that are not presented in
GZ1 catalogue. Thus, we present a new classification for these
objects using S-PLUS data with competitive quality to the hu-
man/machine performance used in GZ1.

The three groups together contain all the S-PLUS DR1 galax-
ies in Stripe-82 with r < 17, see Section 2 for more details.

In Figure 13 we present a visual assessment of randomly cho-
sen galaxies in the full catalog in a certain confidence interval. It
is clear that somehow we are biased toward the objects that have a
higher number in the sample, i.e. as galaxies in top row: the images
are quite shallow, nevertheless the deep learning algorithm is doing
a great job in classifying as S’s or E’s. Then, we have more ob-
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Figure 8. Distribution of probabilities (scores) for galaxies to be E or S
provided by the Neural Network. From top to bottom, these are for the sub-
samples I, II and III, respectively.

vious cases, with larger and more clearly visible (at a human eye)
spiral arms. Yet, since these types of galaxies are less present in
the training sample, they get slightly lower values of probability
(0.9). When the probability gets lower than 0.7, some cases of con-
fusion are present. Yet, as possible to see in Figure 8, the number of
cases with a prediction lower than 0.7 is scarce (in the case of the
E galaxies, around 3 galaxies per bin of probability). The catalogue
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Figure 9. Left: Histograms comparing the distribution of the E-S classification of this paper with respect to the T-Type morphological classification from
Domínguez Sánchez et al. (2018), for the training-validation set (top), the ambiguous set (center) and the blind set (bottom). Right: Histograms comparing the
distribution of the E-S classification of this paper with respect to the T-Type visual classification from Nair & Abraham (2010), for the training-validation set
(top), the ambiguous set (center) and the blind set (bottom). In general, S0s have −3 ≤ TType ' 0.

released within this contribution contains the probability of each
class and also our classification using the same threshold imposed
in the confusion matrix described in Section 6.1.

7.3 The effect of using narrow bands

We compared 5 different models of DL: using 3 broad bands (with
and without pre-training), 5 broad bands, 8 bands (5 broad bands
and 3 narrow bands) and 12 bands. Note that this is the first time
that automated multi-band galaxy classification is applied to more
than 4 bands (Vega-Ferrero et al. 2020). Looking at Figure 6, it
is possible to see that the best model is the one with 3 bands,
pre-trained with the ImageNet, highlighting the importance of pre-
training in this type of analysis (note, however, that for the moment
pre-training is possible only for 3 bands as the ImageNet images
contain three channels). In fact, when comparing the remaining
four cases, with no pre-training, it is clear that the 3-band case
has the worst performance: as mentioned earlier, it was the only
one that did not optimize the training loss in all the folds. Interest-
ingly, the 5- and 8-band models have the highest precision for recall
(among the models with no pre-training), suggesting that using all
the 12 bands, including some low S/N bluer narrow bands, might
increase the confusion in the classification procedure, considering
a DNN architecture with the same complexity. Not surprisingly, in
the 8-bands model, the three narrow bands used are F515, F660 and
F861, which have higher S/N. These findings suggest that this DL
method can be efficiently applied to novel broad band surveys, such
as LSST, with no much gain to the use of more bands in the current
range of magnitudes and redshifts.

Another possibility would be to incorporate the current mod-
els in a Neural ordinary differential equations (NODE) approach as
in Gupta et al. (2020). In fact, NODE is an efficient way to train a
DNN that does not require large data set for training and we may
find a gain using more bands, when implementing them in the pre-
training.

7.4 Deep Learning performance and the relevance of
traditional machine learning algorithms

Deep Learning exceeds human performance in several computer
vision problems, including classification of astronomical sources
(see, e.g. Metcalf et al. 2019; Metcalf 2021; Russakovsky et al.
2015). In particular, the validation set, not used for training the net-
work weights, reached an accuracy of ∼ 98 ± 1%, which leaves
little room for improvement or any measurable bias towards mag-
nitude or redshifts in the current sample. In fact, these results are
comparable to other works using a similar DNN architecture. For
instance, Kalvankar et al. (2020) found 92.58% in accuracy for E
and S classification, while Cheng et al. (2020) found 99% in 2, 800
DES sample and Farias et al. (2020) found ∼ 98% in a SDSS sam-
ple of jpg images. In Kalvankar et al. (2020) an extensive multiclass
classification is explored. In such a regime, we found more ambi-
guity between classes and fewer examples per class. For this fine
grained classification, it might be the case where more bands could
be more advantageous. With fewer examples per class (sometimes
orders of magnitude), this is also a regime where ML with mor-
phological features (as the ones from MFMTK), other than DL,
could find competitive results. In fact, Figure 11 present how the
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Figure 10. C2-H diagrams for our three sub-samples (I,II and III). Left: only
measurements performed in the r-band. Right: mean value of C2 and H are
computed for each galaxy in different filters (u, g, F515, r, F660, I, F861 and
z). The plots are colour coded according to the galaxy classification. The
two classes are clearly separated in this plane. Since the E-S classification is
trained using GZ1 (i.e. visual classification based on the shape of the object;
with or without spiral arms) and the morphometric parameters also measure
the monochromatic light distribution, this plot constitutes a sanity check:
the two methods recover similarly the form of the objects, without taking
into consideration the galaxy colour or stellar population. When considering
the mean of C2 and H across different filters, there is less scatter in the
distributions of morphometric indices.

morphological features evolve in different bands in the two groups
classified by the method presented in this paper. It is noteworthy
the median separation between E and S. The figure presents visual
prospect on how the 12 band morphological features could also be
exploited for the current binary classification using an algorithm
with lower computational complexity, i.e. easily scalable for Big
Data regime. We leave this study, including multiclass approach,
for a future contribution (Lucatelli et al, in prep.)

7.5 Agreement between Deep Learning classification
intuition given in morphological features

The use of DL for imaging recognition extends to way more than
astrophysics. Consequently, this method has rapidly advanced and
improved in the last years, providing a database for pre-training,
ideas and tools that have been largely applied in astronomy, re-
sulting in a wealth of publications (see for example Domínguez
Sánchez et al. (2018); Barchi et al. (2020); Tuccillo et al. (2016);
Khalifa et al. (2018); Dieleman et al. (2015); Zhu et al. (2019); Dai
& Tong (2018)). Barchi et al. (2020) applied Ml and DL techniques
to the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7), pro-
viding a catalogue of 670,560 galaxies. They achieve a 99% accu-
racy on average when classifying galaxies into two classes (E’s and
S’s). This result compares well with what obtained in this work,
somehow not surprisingly (or maybe reassuring) since they make

use of the same training and validation set (i.e. GZ1) and of a simi-
lar method, based on DL. To deeply explore the results of these two
methods, we can compare Figure 9 of this work with figures 11 and
12 in Barchi et al. (2020). These figures show which T-Type, as ob-
tained by Domínguez Sánchez et al. (2018) and Nair & Abraham
(2010), corresponds to E and S galaxies respectively. In theory, E
and S0, or early-type galaxies, should have a T-Type ≤ 0, while S,
or late-type galaxies, should present a T-Type > 0. On average, both
works recover such behaviour, especially when compared with the
visual classification of Nair & Abraham (2010) (note that in this
work the number statistics in this comparison are lower than in
Barchi et al. 2020). Interestingly, when comparing with the auto-
mated classification of Domínguez Sánchez et al. (2018), it is clear
that in this work the E galaxies class is better defined (i.e. there are
almost no galaxies classified as E with a T-Type > 0). Barchi et al.
(2020) obtains a similar result when selecting only galaxies with
a low probability of being S0 galaxies (as defined in Domínguez
Sánchez et al. (2018)). The novel DL algorithm presented in this
work is extremely accurate in identifying E galaxies. On the other
side, some of the galaxies classified as S have a T-Type ≤ 0 in
Domínguez Sánchez et al. (2018), maybe caused by contamination
from S0 galaxies. It is hard to compare these results since no code
carries the truth, but it is interesting to notice that the main cause
of confusion in both the classifications is generally occurring for
T-Type ' 0 (i.e., where the S0 class lies). In this work, as in pre-
vious works (Bamford et al. 2009; Lintott et al. 2008, 2010), S0
galaxies are incorporated to the early-type galaxy class, together
with the E galaxies, since both classes of objects do not present
spiral arms. Yet, low resolution or faint images of S galaxies can
be easily misclassified as S0 galaxies and, therefore, as early-type
galaxies. A morphological classification that explicitly considers
this third group of objects is necessary to overcome this problem
(Lucatelli et al in prep).

7.6 Future challenges for Deep Learning morphological
classification

Despite the high performance results, there still open challenges
for the DL approach in morphological classification. In particular,
DNNs are known to find non trivial solutions which might be hard
to interpret (Ribeiro et al. 2016; Lundberg & Lee 2017). Thus, it is
worth exploring the behaviour of such DNN approach in the sur-
vey limits, i.e., in the faint and high redshift end, where humans
or measurable morphological features fail, to see if and how the
DNN could contribute beyond what one would expect. Other major
challenge is to explore the range of small Petrosian radius.

This method will subsequently be applied to the whole S-
PLUS survey, providing a morphological classification of galaxies
for 8000 deg2 of the southern hemisphere. Combining galaxy mor-
phology with other data products of the S-PLUS survey, such as
stellar population properties, as obtained through SED fitting of the
5 broad and 7 narrow bands, as well as environment measures, re-
covered via the precise photo-z determinations (δz ' 0.03), will al-
low to map the large scale structure of the local Universe and probe
the dependence on mass and environment of galaxy evolution. Our
results enhance the use of pre-trained weights. Presently, due to Im-
ageNet use, we limit the pre-training to the 3-band case. However,
as we produced models in multiband datasets, one could use those
results in the advantage of pre-trained models for transfer learning
using more than three bands in other surveys such LSST (LSST
Sci. Collaboration et al. 2009), Euclid (Laureijs et al. 2011), Nancy
Grace Roman Space Telescope (Gehrels & and 2015) among oth-
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Figure 11. Evolution of morphometric measurements in different filters. These are the median values for H and C1 for all galaxies in each filter, and the
shadowed errors are ±1σ.

ers. In particular, the 8 narrow band model could be used as a start-
ing point for narrow band surveys such as J-PAS (Benitez et al.
2014) and J-PLUS (Cenarro et al. 2019b). By using the current pre-
trained models in those surveys it would be possible to evaluate if
pre-training in more bands can achieve a gain in a different range
of magnitudes and redshifts. Thus, we release out DL models along
with our catalogue as a value-added product for the astronomical
community.

DATA AVAILABILITY

We make the morphological catalogues developed in this con-
tribution publicly available in https://github.com/cdebom/
splus_morph. The Deep Learning models are also public and can
be downloaded in http://clearnightsrthebest.com.
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