207 research outputs found

    History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2

    Get PDF
    The discovery of two-dimensional magnets has initiated a new field of research, exploring both fundamental low-dimensional magnetism, and prospective spintronic applications. Recently, observations of magnetic skyrmions in the 2D ferromagnet Fe3GeTe2 (FGT) have been reported, introducing further application possibilities. However, controlling the exhibited magnetic state requires systematic knowledge of the history-dependence of the spin textures, which remains largely unexplored in 2D magnets. In this work, we utilise real-space imaging, and complementary simulations, to determine and explain the thickness-dependent magnetic phase diagrams of an exfoliated FGT flake, revealing a complex, history-dependent emergence of the uniformly magnetised, stripe domain and skyrmion states. The results show that the interplay of the dominant dipolar interaction and strongly temperature dependent out-of-plane anisotropy energy terms enables the selective stabilisation of all three states at zero field, and at a single temperature, while the Dzyaloshinksii-Moriya interaction must be present to realise the observed Néel-type domain walls. The findings open perspectives for 2D devices incorporating topological spin textures

    Identification of Potential Sites for Tryptophan Oxidation in Recombinant Antibodies Using tert-Butylhydroperoxide and Quantitative LC-MS

    Get PDF
    Amino acid oxidation is known to affect the structure, activity, and rate of degradation of proteins. Methionine oxidation is one of the several chemical degradation pathways for recombinant antibodies. In this study, we have identified for the first time a solvent accessible tryptophan residue (Trp-32) in the complementary-determining region (CDR) of a recombinant IgG1 antibody susceptible to oxidation under real-time storage and elevated temperature conditions. The degree of light chain Trp-32 oxidation was found to be higher than the oxidation level of the conserved heavy chain Met-429 and the heavy chain Met-107 of the recombinant IgG1 antibody HER2, which have already been identified as being solvent accessible and sensitive to chemical oxidation. In order to reduce the time for simultaneous identification and functional evaluation of potential methionine and tryptophan oxidation sites, a test system employing tert-butylhydroperoxide (TBHP) and quantitative LC-MS was developed. The optimized oxidizing conditions allowed us to specifically oxidize the solvent accessible methionine and tryptophan residues that displayed significant oxidation in the real-time stability and elevated temperature study. The achieved degree of tryptophan oxidation was adequate to identify the functional consequence of the tryptophan oxidation by binding studies. In summary, the here presented approach of employing TBHP as oxidizing reagent combined with quantitative LC-MS and binding studies greatly facilitates the efficient identification and functional evaluation of methionine and tryptophan oxidation sites in the CDR of recombinant antibodies

    Non Inflammatory Boronate Based Glucose-Responsive Insulin Delivery Systems

    Get PDF
    Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT). This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA), a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L–40 mmoles/L). The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger

    A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises

    Get PDF
    The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison exercises employing real-world and synthetic input datasets. To that end, the results obtained by different practitioners using ten different RMs were compared with a reference. In order to explain the differences in the performances and uncertainties of the different approaches, the apportioned mass, the number of sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all evaluated using the methodology described in Belis et al. (2015). In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47 different source apportionment model results met the 50% standard uncertainty quality objective established for the performance test. In addition, 68% of the SCE uncertainties reported in the results were coherent with the analytical uncertainties in the input data. The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory performances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those better quantified by the models while those with contributions to the PM mass close to 1% represented a challenge. The results of the assessment indicate that RMs are capable of estimating the contribution of the major pollution source categories over a given time window with a level of accuracy that is in line with the needs of air quality management

    Efficacy and Safety of Lacosamide in Painful Diabetic Neuropathy

    Get PDF
    OBJECTIVE: To evaluate efficacy and safety of lacosamide compared with placebo in painful diabetic polyneuropathy. RESEARCH DESIGN AND METHODS: Diabetic patients with at least moderate neuropathic pain were randomized to placebo or lacosamide 400 (in a slow or standard titration) or 600 mg/day over 6-week titration and 12-week maintenance periods. Primary efficacy criterion was intra-individual change in average daily Numeric Pain Rating Scale score from baseline to the last 4 weeks. RESULTS: For the primary end point, pain reduction was numerically but not statistically greater with lacosamide compared with placebo (400 mg/day, P = 0.12; 600 mg/day, P = 0.18). Both doses were significantly more effective compared with placebo over the titration (P = 0.03, P = 0.006), maintenance (P = 0.01, P = 0.005), and entire treatment periods (P = 0.03, P = 0.02). Safety profiles between titration schemes were similar. CONCLUSIONS: Lacosamide reduced neuropathic pain and was well tolerated in diabetic patients, but the primary efficacy criterion was not met, possibly due to an increased placebo response over the last 4 weeks.status: publishe

    Assessing the effectiveness of a 3-month day-and-night home closed-loop control combined with pump suspend feature compared with sensor-augmented pump therapy in youths and adults with suboptimally controlled type 1 diabetes: a randomised parallel study protocol

    Get PDF
    Introduction:\textbf{Introduction:} Despite therapeutic advances, many individuals with type 1 diabetes are unable to achieve tight glycaemic target without increasing the risk of hypoglycaemia. The objective of this study is to determine the effectiveness of a 3-month day-and-night home closed-loop glucose control combined with a pump suspend feature, compared with sensor-augmented insulin pump therapy in youths and adults with suboptimally controlled type 1 diabetes. Methods and analysis:\textbf{Methods and analysis:} The study adopts an open-label, multi-centre, multi-national (UK and USA), randomised, single-period, parallel design and aims for 84 randomised patients. Participants are youths (6-21 years) or adults (>21 years) with type 1 diabetes treated with insulin pump therapy and suboptimal glycaemic control (glycated haemoglobin (HbA1c) ≥7.5% (58 mmol/mol) and ≤10% (86 mmol/mol)). Following a 4-week run-in period, eligible participants will be randomised to a 3-month use of automated closed-loop insulin delivery combined with pump suspend feature or to sensor-augmented insulin pump therapy. Analyses will be conducted on an intention-to-treat basis. The primary outcome is the time spent in the target glucose range from 3.9 to 10.0 mmol/L based on continuous glucose monitoring levels during the 3-month free-living phase. Secondary outcomes include HbA1c at 3 months, mean glucose, time spent below and above target; time with glucose levels 16.7 mmol/L, glucose variability; total, basal and bolus insulin dose and change in body weight. Participants' and their families' perception in terms of lifestyle change, daily diabetes management and fear of hypoglycaemia will be evaluated. Ethics and dissemination:\textbf{Ethics and dissemination:} Ethics/institutional review board approval has been obtained. Before screening, all participants/guardians will be provided with oral and written information about the trial. The study will be disseminated by peer-reviewed publications and conference presentations. Trial registration number:\textbf{Trial registration number:} NCT02523131; Pre-results.JDRF, National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Strategic Award (100574/Z/12/Z)

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments

    International Consensus on Use of Continuous Glucose Monitoring.

    Get PDF
    Measurement of glycated hemoglobin (HbA1c) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA1c testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA1c measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies, as well as standardized advice about how best to use the new information they provide, have yet to be established. In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address these issues. This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes
    corecore