141 research outputs found

    Experimental study of Tc 100 β decay with total absorption γ -ray spectroscopy

    Get PDF
    The β decay of Tc100 has been studied by using the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ-ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also reported. Comparison of these calculations with our measurement serves as a benchmark for calculations of the double β decay of Mo100. © 2017 American Physical Society

    First measurements with a new β\beta-electron detector for spectral shape studies

    Full text link
    The shape of the spectrum corresponding to the electrons emitted in β\beta decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of β\beta-spectrum shapes. In this work we present a newly developed detector for β\beta electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. First measurements employing this detector have been carried out with mono-energetic electrons from the high-energy resolution electron-beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono-energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the β\beta-electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future β\beta-decay experiments at the Ion Guide Isotope Separator On-Line facility in Jyv\"askyl\"a, aimed at improving our understanding of reactor antineutrino spectra

    Total absorption gamma-ray spectroscopy study of the β-decay of 186Hg

    Get PDF
    7 pags., 9 figs., 1 tab.The Gamow-Teller strength distribution of the decay of Hg into Au has been determined for the first time using the total absorption gamma spectroscopy technique and has been compared with theoretical QRPA calculations using the SLy4 Skyrme force. The measured Gamow-Teller strength distribution and the half-life are described by mixing oblate and prolate configurations independently in the parent and daughter nuclei. In this theoretical framework the best description of the experimental beta strength is obtained with dominantly prolate components for both parent Hg and daughter Au. The approach also allowed us to determine an upper limit of the oblate component in the parent state. The complexity of the analysis required the development of a new approach in the analysis of the X-ray gated total absorption spectrum.This work was supported by Spanish Ministerio de Economía y Competitividad under grants FPA2011-24553, FPA2014-52823-C2-1-P, FPA2017-83946-C2-1-P, FPA2017-87568-P, Ministerio de Ciencia e Innovación grants PID2019-104714GB-C21 and RTI2018-098868-B-100, program Severo Ochoa (SEV-2014-0398), ENSAR (grant 262010) and by the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 654002. S.E.A.O. thanks the support of CPAN Consolider-Ingenio 2010 Programme CSD2007-00042 grant. E.G. acknowledges support from TÜBITAK 2219 Abroad Research Fellowship Programme. R.B.C. acknowledges support by the Max-Planck-Partner group. Support from the technical staff and engineers of ISOLDE-CERN is acknowl- edged. W.G. acknowledges the support of STFC (UK) council grant ST/P005314/1. V.G. acknowledges the support of the National Science Center, Poland, under Contract No. 2019/35/D/ST2/02081. This work was also supported by the National Research, Development and Innovation Fund of Hungary, financed under the K18 funding scheme with Projects No. K 128729 and NN128072. P.S. acknowledges support from MCI/AEI/FEDER, UE (Spain) under grant PGC2018-093636-B-I0

    First evidence of multiple beta-delayed neutron emission for isotopes with A > 100

    Get PDF
    The beta-delayed neutron emission probability, P-n, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, S-n. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which beta-delayed one-neutron emission (beta 1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. beta 1n decays have been experimentally measured up to the mass A similar to 1 5 0, plus a single measurement of Tl-210. Concerning two-neutron emitters (beta 2n), similar to 3 0 0 isotopes are accessible and only 24 have been measured so far up to the mass A = 100. In this contribution, we report recent experiments which allowed the measurement of beta 1n emitters for masses beyond A > 200 and N > 1 2 6 and identified the heaviest beta 2n emitter measured so far, Sb-136.Peer reviewe

    Measurement of the heaviest beta-delayed 2-neutron emitter : Sb-136

    Get PDF
    The beta-delayed neutron emission probability, P-n, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of beta-delayed one-neutron emitters (beta 1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of beta-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed Sb-136 as the heaviest double neutron emitter (beta 2n) measured so far.The beta-delayed neutron emission probability, P-n, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of beta-delayed one-neutron emitters (beta 1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of beta-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed Sb-136 as the heaviest double neutron emitter (beta 2n) measured so far.The beta-delayed neutron emission probability, P-n, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of beta-delayed one-neutron emitters (beta 1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of beta-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed Sb-136 as the heaviest double neutron emitter (beta 2n) measured so far.Peer reviewe

    Beta decay of the Tz=-2 nucleus 64Se and its descendants

    Get PDF
    International audience; The beta decay of the Tz=-2 nucleus 64Se has been studied in a fragmentation reaction at RIKEN-Nishina Center. 64Se is the heavies Tz=-2 nucleus that decays to bound states in the daughter nucleus and the heaviest case where the mirror reaction 64Zn(3He,t)64Ga on the Tz=+2 64Zn stable target exists and can be compared. Beta-delayed gamma and proton radiation is reported for the 64Se and 64As cases. New levels have been observed in 64As, 64Ge (N=Z), 63Ge and 63Ga. The associated T1/2 values have been obtained
    corecore