44 research outputs found

    Effect of initial surface topography during laser polishing process: Statistical analysis

    Get PDF
    Surface finish is one of the most important quality characteristics of fabricated components. Laser polishing (LP) is one of the advanced manufacturing surface finishing techniques that has been recently developed and successfully employed for improving surface quality without deteriorating the overall structural form through surface smoothing by melting and redistributing a thin layer of molten material. This paper advances the statistical analysis of the LP process emphasizing aspects of the effect of the initial surface topography. Flat and ground initial surfaces are used for comparative statistical analysis of initial and polished profiles obtained experimentally. Their profile geometries and surface quality characteristics, such as, roughness, were compared and analyzed. In addition, LP process was experimentally investigated as a thermodynamic operator represented by a transfer function and it was examined by means of a coherence function

    Effect of transcranial direct current stimulation combined with patient-controlled intravenous morphine analgesia on analgesic use and post-thoracotomy pain. A prospective, randomized, double-blind, sham-controlled, proof-of-concept clinical trial

    Get PDF
    Background: Transcranial direct current stimulation (tDCS) is used for various chronic pain conditions, but experience with tDCS for acute postoperative pain is limited. This study investigated the effect of tDCS vs. sham stimulation on postoperative morphine consumption and pain intensity after thoracotomy. Methods: This is a single-center, prospective, randomized, double-blind, sham-controlled trial in lung cancer patients undergoing thoracotomy under general anesthesia. All patients received patient-controlled (PCA) intravenous morphine and intercostal nerve blocks at the end of surgery. The intervention group (a-tDCS, n = 31) received anodal tDCS over the left primary motor cortex (C3-Fp2) for 20 min at 1.2 mA, on five consecutive days; the control group (n = 31) received sham stimulation. Morphine consumption, number of analgesia demands, and pain intensity at rest, with movement and with cough were recorded at the following intervals: immediately before (T1), immediately after intervention (T2), then every hour for 4 h (Т3-Т6), then every 6 h (Т7-Т31) for 5 days. We recorded outcomes on postoperative days 1 and 5 and conducted a phone interview inquiring about chronic pain 1 year later (NCT03005548). Results: A total of 62 patients enrolled, but tDCS was prematurely stopped in six patients. Fifty-five patients (27 a-tDCS, 28 sham) had three or more tDCS applications and were included in the analysis. Cumulative morphine dose in the first 120 h after surgery was significantly lower in the tDCS [77.00 (54.00-123.00) mg] compared to sham group [112.00 (79.97-173.35) mg, p = 0.043, Cohen\u27s d = 0.42]. On postoperative day 5, maximum visual analog scale (VAS) pain score with cough was significantly lower in the tDCS group [29.00 (20.00-39.00) vs. 44.50 (30.00-61.75) mm, p = 0.018], and pain interference with cough was 80% lower [10.00 (0.00-30.00) vs. 50.00 (0.00-70.00), p = 0.013]. One year after surgery, there was no significant difference between groups with regard to chronic pain and analgesic use. Conclusion: In lung cancer patients undergoing thoracotomy, three to five tDCS sessions significantly reduced cumulative postoperative morphine use, maximum VAS pain scores with cough, and pain interference with cough on postoperative day 5, but there was no obvious long-term benefit from tDCS

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe

    Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.J.A.S. and R.B. were funded by the Natural Environment Research Council (NE/P006760/1). C.D. acknowledges the National Science Foundation (NSF), which sponsors the National Center for Atmospheric Research. D.M.S. was supported by the Met Office Hadley Centre Climate Programme (GA01101) and the APPLICATE project, which is funded by the European Union’s Horizon 2020 programme. X.Z. was supported by the NSF (ARC#1023592). P.J.K. and K.E.M. were supported by the Canadian Sea Ice and Snow Evolution Network, which is funded by the Natural Science and Engineering Research Council of Canada. T.O. was funded by Environment and Climate Change Canada (GCXE17S038). L.S. was supported by the National Oceanic and Atmospheric Administration’s Climate Program Office

    Institutional investors and corporate governance

    Get PDF
    We provide a comprehensive overview of the role of institutional investors in corporate governance with three main components. First, we establish new stylized facts documenting the evolution and importance of institutional ownership. Second, we provide a detailed characterization of key aspects of the legal and regulatory setting within which institutional investors govern portfolio firms. Third, we synthesize the evolving response of the recent theoretical and empirical academic literature in finance to the emergence of institutional investors in corporate governance. We highlight how the defining aspect of institutional investors – the fact that they are financial intermediaries – differentiates them in their governance role from standard principal blockholders. Further, not all institutional investors are identical, and we pay close attention to heterogeneity amongst institutional investors as blockholders
    corecore