Abstract

Data availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Data were collected within the MCC Collaborative Research Network under a data sharing agreement and cannot be made publicly available.Code availability: A sample of the analysis code is available from https://github.com/CHENlab-Yale/MCC_ProjAging_Temp .Supplementary information is available online at: https://link-springer-com.ezproxytest.brunel.ac.uk/article/10.1038/s41467-024-45901-z#Sec15 .Older adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5 °C, 2 °C, and 3 °C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%–0.4% at 1.5–3 °C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modeling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. K.C. was supported by the Yale Planetary Solutions Project seed grant. A.G., A.S., and S.R. were supported by the European Union’s Horizon 2020 Project Exhaustion grant (820655). A.G. was also supported by the Medical Research Council UK grant (MR/V034162/1). J.M. received funding from the Fundação para a Ciência e a Tecnlogia Grant (SFRH/BPD/115112/2016). A.T. was supported by the MCIN/AEI/10.13039/501100011033 grant (CEX2018-000794-S). A.U. and J.K. were supported by the Czech Science Foundation (22-24920S). F.S. was supported by the Italian Ministry of University and Research (MUR), Department of Excellence project 2023-2027 ReDS ‘Rethinking Data Science’ - Department of Statistics, Computer Science and Applications - University of Florence. MNM. was supported by the European Commission (H2020-MSCA-IF-2020) under REA grant agreement no. 101022870. A.V.C. acknowledges the support of the Swiss National Foundation (TMSGI3_211626). V.H. received funding from the European Union’s Horizon 2020 research and innovation program (Marie Skłodowska-Curie Grant Agreement No.: 101032087)

    Similar works