125 research outputs found

    A Cylindrical GEM Inner Tracker for the BESIII experiment at IHEP

    Full text link
    The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector that collects data provided by the collision in the Beijing Electron Positron Collider II (BEPCII), hosted at the Institute of High Energy Physics of Beijing. Since the beginning of its operation, BESIII has collected the world largest sample of J/{\psi} and {\psi}(2s). Due to the increase of the luminosity up to its nominal value of 10^33 cm-2 s-1 and aging effect, the MDC decreases its efficiency in the first layers up to 35% with respect to the value in 2014. Since BESIII has to take data up to 2022 with the chance to continue up to 2027, the Italian collaboration proposed to replace the inner part of the MDC with three independent layers of Cylindrical triple-GEM (CGEM). The CGEM-IT project will deploy several new features and innovation with respect the other current GEM based detector: the {\mu}TPC and analog readout, with time and charge measurements will allow to reach the 130 {\mu}m spatial resolution in 1 T magnetic field requested by the BESIII collaboration. In this proceeding, an update of the status of the project will be presented, with a particular focus on the results with planar and cylindrical prototypes with test beams data. These results are beyond the state of the art for GEM technology in magnetic field

    Prospects for K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu } at CERN in NA62

    Full text link
    The NA62 experiment will begin taking data in 2015. Its primary purpose is a 10% measurement of the branching ratio of the ultrarare kaon decay K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu }, using the decay in flight of kaons in an unseparated beam with momentum 75 GeV/c.The detector and analysis technique are described here.Comment: 8 pages for proceedings of 50 Years of CP

    Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR

    Full text link
    The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the \PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of pˉ+p\bar p +p into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction pˉ+pe++e\bar p +p \to e^++ e^- can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q214q^2\simeq 14 (GeV/c)2^2. The total pˉ+pe++e\bar p +p\to e^++e^- cross section will be measured up to q228q^2\simeq 28 (GeV/c)2^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations, 4 tables, 9 figure

    Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring

    Full text link
    We propose to use an internal polarized hydrogen storage cell gas target in the AD ring to determine for the first time the two total spin-dependent pbar-p cross sections sigma_1 and sigma_2 at antiproton beam energies in the range from 50 to 450 MeV. The data obtained are of interest by themselves for the general theory of pbar-p interactions since they will provide a first experimental constraint of the spin-spin dependence of the nucleon-antinucleon potential in the energy range of interest. In addition, measurements of the polarization buildup of stored antiprotons are required to define the optimum parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to feed a double-polarized asymmetric pbar-p collider with polarized antiprotons. Such a machine has recently been proposed by the PAX collaboration for the new Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany. The availability of an intense stored beam of polarized antiprotons will provide access to a wealth of single- and double-spin observables, thereby opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER

    A new inner tracker based on GEM detectors for the BES III experiment

    Get PDF
    A new inner tracker based on a cylindrical gas electron-multiplier detector is under development to replace the current inner drift chamber of the BES III spectrometer. The BES III experiment is carried out at the BEPC II e[Formula: see text]e[Formula: see text] collider in Beijing at center-of-mass energies in the tau-charm region with a design luminosity of 1.0 [Formula: see text] 10[Formula: see text] cm[Formula: see text]s[Formula: see text]. The new inner tracker consists of three cylindrical layers of triple GEM surrounding the interaction point, covering 93% of solid angle. To fulfill physics requirements, a spatial resolution of 130 μm must be achieved. Both planar and cylindrical prototypes have been built and tested. A custom ASIC using UMC 110-nm technology has been designed to provide charge and time measurements—the first prototype is in testing. Notable and innovative aspects of the new inner tracker and the performance of the detector prototypes and readout ASIC are reported here

    Performance of the micro-TPC Reconstruction for GEM Detectors at High Rate

    Full text link
    Gas detectors are one of the pillars of the research in fundamental physics. Since many years, a new concept of detectors, the Micro Pattern Gas Detectors, allows to overcome many of the problems of other types of commonly used detectors, as drift chambers and microstrips, reducing the discharge rate and increasing the radiation tolerance. Among these, one of the most commonly used is the Gas Electron Multiplier. Commonly deployed as fast timing detectors and triggers, due to their fast response, high rate capability and high radiation hardness, they can also be used as trackers. The center of gravity readout technique allows to overcome the limit of the digital pads, whose spatial resolution is constrained by the pitch size. The presence of a high external magnetic field can distort the electronic cloud and affect the spatial resolution. The micro-TPC reconstruction method allows to reconstruct the three dimensional particle position as in a traditional Time Projection Chamber, but within a drift gap of a few millimeters. This method brings these detectors into a new perspective for what concerns the spatial resolution in strong magnetic field. In this report, the basis of this new technique will be shown and it will be compared to the traditional center of gravity. The results of a series of test beam performed with 10 x 10 cm2 planar prototypes in magnetic field will also be presented. This is one of the first implementations of this technique for GEM detectors in magnetic field and allows to reach unprecedented performance for gas detectors, up to a limit of 120 micron at 1T, one of the world's best results for MPGDs in strong magnetic field. The micro-TPC reconstruction has been recently tested at very high rates in a test beam at the MAMI facility; preliminary results of the test will be presented.Comment: Proceedings for "2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)" (IEEE17) Conference, 21-28 October 2017, Atlanga, Georgia, USA (prepared for submission to IEEE Conference Record

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Externalities and the nucleolus

    Full text link
    In most economic applications, externalities prevail: the worth of a coalition depends on how the other players are organized. We show that there is a unique natural way of extending the nucleolus from (coalitional) games without externalities to games with externalities. This is in contrast to the Shapley value and the core for which many different extensions have been proposed

    LHCb calorimeters: Technical Design Report

    Get PDF
    corecore