319 research outputs found

    Direct observation of 4+ to 2+ gamma transition in 8Be

    Full text link
    The low lying states in 8^8Be are believed to have a two-alpha cluster structure and hence a large intrinsic quadrupole deformation. An earlier calculation showed a large collective enhancement in gamma transition probability between the low lying states leading to a 4+^+ to 2+^+ gamma branch of 107\sim10^{-7} and a resonant radiative cross section of 134 nb for the α+α\alpha+\alpha entrance channel. We report here the first experimental evidence for this transition through a γαα\gamma-\alpha-\alpha coincidence measurement in the reaction 4^4He(α,αγ\alpha,\alpha \gamma)4^4He using a gas target. The measured cross sections on and off the 4+^+ resonance are 165 ±\pm 41 (stat) ±\pm35 (sys) nb and 39 ±\pm 25 (stat) ±\pm7 (sys) nb, respectively.Comment: Total 4 pages, 4 figures, in RevTeX format, submitted to PR

    Electromagnetic transition from the 4+^+ to 2+^+ resonance in 8^8Be measured via the radiative capture in 4^4He+4^4He

    Get PDF
    An earlier measurement on the 4+^+ to 2+^+ radiative transition in 8^8Be provided the first electromagnetic signature of its dumbbell-like shape. However, the large uncertainty in the measured cross section does not allow a stringent test of nuclear structure models. The present paper reports a more elaborate and precise measurement for this transition, via the radiative capture in the 4^4He+4^4He reaction, improving the accuracy by about a factor of three. The {\it ab initio} calculations of the radiative transition strength with improved three-nucleon forces are also presented. The experimental results are compared with the predictions of the alpha cluster model and {\it ab initio} calculations.Comment: 5 pages and 7 figures, Submitted to Physical Review Letter

    Astrophysical S_{17}(0) factor from a measurement of d(7Be,8B)n reaction at E_{c.m.} = 4.5 MeV

    Full text link
    Angular distribution measurements of 2^2H(7^7Be,7^7Be)2^2H and 2^2H(7^7Be,8^8B)nn reactions at Ec.m.E_{c.m.}\sim~4.5 MeV were performed to extract the astrophysical S17(0)S_{17}(0) factor using the asymptotic normalization coefficient (ANC) method. For this purpose a pure, low emittance 7^7Be beam was separated from the primary 7^7Li beam by a recoil mass spectrometer operated in a novel mode. A beam stopper at 0^{\circ} allowed the use of a higher 7^7Be beam intensity. Measurement of the elastic scattering in the entrance channel using kinematic coincidence, facilitated the determination of the optical model parameters needed for the analysis of the transfer data. The present measurement significantly reduces errors in the extracted 7^7Be(p,γ\gamma) cross section using the ANC method. We get S17S_{17}~(0)~=~20.7~±\pm~2.4 eV~b.Comment: 15 pages including 3 eps figures, one figure removed and discussions updated. Version to appear in Physical Review

    A Natural Framework for Solar and 17 keV Neutrinos

    Full text link
    Motivated by recent experimental claims for the existence of a 17 keV neutrino and by the solar neutrino problem, we construct a class of models which contain in their low-energy spectrum a single light sterile neutrino and one or more Nambu-Goldstone bosons. In these models the required pattern of breaking of lepton-number symmetry takes place near the electroweak scale and all mass heirarchies are technically natural. The models are compatible with all cosmological and astrophysical constraints, and can solve the solar neutrino problem via either the MSW effect or vacuum oscillations. The deficit in atmospheric muon neutrinos seen in the Kamiokande and IMB detectors can also be explained in these models.Comment: 23 page

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at P¯ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p→e+e−p¯p→e+e− is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p→π+π−p¯p→π+π− , is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Planck scale effects in neutrino physics

    Full text link
    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV.Comment: 24 pages, 1 figure (not included but available upon request), LaTex, IC/92/196, SISSA-140/92/EP, LMU-09/9
    corecore