42 research outputs found

    Estimates of Cl atom concentrations and hydrocarbon kinetic reactivity in surface air at Appledore Island, Maine (USA), during International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals

    Get PDF
    Average hydroxyl radical (OH) to chlorine atom (Cl·) ratios ranging from 45 to 119 were determined from variability‐lifetime relationships for selected nonmethane hydrocarbons (NMHC) in surface air from six different transport sectors arriving at Appledore Island, Maine, during July 2004. Multiplying these ratios by an assumed average OH concentration of 2.5 × 106 cm−3 yielded estimates of Cl· concentrations of 2.2 to 5.6 × 104 cm−3. Summed reaction rates of methane and more than 30 abundant NMHCs with OH and Cl· suggest that Cl· reactions increased the kinetic reactivity of hydrocarbons by 16% to 30% over that due to OH alone in air associated with the various transport sectors. Isoprene and other abundant biogenic alkenes were the most important hydrocarbon contributors after methane to overall kinetic reactivity

    Nanoparticle growth following photochemical α‐ and β‐pinene oxidation at Appledore Island during International Consortium for Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals 2004

    Get PDF
    Nanoparticle events were observed 48 times in particle size distributions at Appledore Island during the International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens on the Isles of Shoals (ICARTT/CHAiOS) field campaign from 2 July to 12 August of 2004. Eighteen of the nanoparticle events showed particle growth and occurred during mornings when peaks in mixing ratios of α‐ and β‐pinene and ozone made production of condensable products from photochemical oxidation probable. Many pollutants and other potential precursors for aerosol formation were also at elevated mixing ratios during these events, including NO, HNO3, NH3, HCl, propane, and several other volatile organic carbon compounds. There were no consistent changes in particle composition, although both submicron and supermicron particles included high maximum concentrations of methane sulfonate, sulfate, iodide, nitrate, and ammonium during these events. Nanoparticle growth continued over several hours with a nearly linear rate of increase of diameter with time. The observed nanoparticle growth rates varied from 3 to 13 nm h−1. Apparent nanoparticle aerosol mass fractions (yields) were estimated to range from less than 0.0005 to almost 1 using α‐ and β‐pinene as the presumed particle source. These apparent high aerosol mass fractions (yields) at low changes in aerosol mass are up to two orders of magnitude greater than predictions from extrapolated laboratory parameterizations and may provide a more accurate assessment of secondary organic aerosol formation for estimating the growth of nanoparticles in global models

    The United States' next generation of atmospheric composition and coastal ecosystem measurements : NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    Get PDF
    Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 93 (2012): 1547–1566, doi:10.1175/BAMS-D-11-00201.1.The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95°–100°W, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.Funding for GEO-CAPE definition activities is provided by the Earth Science Division of the National Aeronautics and Space Administration.2013-04-0

    Latitudinal variation in the multiphase chemical processing of inorganic halogens and related species over the eastern North and South Atlantic Oceans

    Get PDF
    Volatile inorganic and size-resolved particulate Cl- and Br-species were measured in near-surface air over a broad range of conditions within four distinct regimes (European – EURO, North African – N-AFR, the Intertropical Convergence Zone – ITCZ, and South Atlantic – S-ATL) along a latitudinal gradient from 51° N to 18° S through the eastern Atlantic Ocean. Median dry-deposition fluxes of sea salt, oxidized N, and oxidized non-sea-salt S varied by factors of 25, 17, and 9, respectively, among the regimes. Sea-salt production was the primary source for inorganic Cl and Br. Acidification and dechlorination of sea salt primarily by HNO3 sustained HCl mixing ratios ranging from medians of 82 (ITCZ) to 682 (EURO) pmol mol−1. Median aerosol pHs inferred from HCl phase partitioning with super-μm size fractions ranged from ~3.0 for EURO to ~4.5 for ITCZ. Because SO2 solubility over this pH range was low, S(IV) oxidation by hypohalous acids was unimportant under most conditions. Simulations with a detailed multiphase box model indicated that BrCl photolysis and ClO + NO were the major sources for atomic Cl in all regimes. Simulated midday concentrations of Cl atoms ranged from 2.1×104 to 7.8×104 cm−3 in the ITCZ and N-AFR regimes, respectively. Measured particulate Br− (median enrichment factor = 0.25) was greater and volatile inorganic Br less than simulated values, suggesting that the halogen activation mechanism in the model overestimated Br-radical production and processing. Reaction with atomic Br was an important sink for modeled O3 (5% in EURO to 46% in N-AFR). Formation of halogen nitrates accelerated the oxidation of NOx (NO + NO2) primarily via hydrolysis reactions involving S aerosol. Relative to simulations with no halogens, lower NOx coupled with direct reactions involving halogens yielded lower steady state mixing ratios of OH (20% to 54%) and O3 (22% to 62%) and lower midday ratios of OH:HO2 (3% to 32%) in all regimes

    V.: The 1935–2003 Air Temperature Record from the Summit of Mount

    No full text
    ABSTRACT Meteorological observations have been taken continuously at the summit of Mount Washington since 1932. Results of an analysis of the air temperature record over the 1935-2003 period show a statistically significant increase in mean temperature of ϳ0.3°C, while the diurnal temperature range has decreased by ϳ0.15°C. The decadal structure evident in the record reveals that, in contrast to North American trends, the summit experienced relatively cool temperatures in the 1940s. The late 1980s and early 1990s were relatively warm on the summit, in agreement with North American decadal trends. The times of daily maximum and minimum temperatures show that the summit climate is dominantly influenced by boundary layer processes 30% of the time and free air circulation 50% of the time. No evidence of a "weekend effect" was found

    Inorganic bromine in the marine boundary layer: a critical review

    Get PDF
    International audienceThe cycling of inorganic bromine in the marine boundary layer (mbl) has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is substantially depleted in bromine (often exceeding 50%) relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that the supermicrometer depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. Mechanisms for the submicrometer enrichments are not well understood. Currently available techniques cannot reliably quantify many Br containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans outside the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion) can be of local importance. Transport of degradation products of long-lived Br containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy tropospheric ozone, oxidize dimethylsulfide (DMS) and hydrocarbons in the gas phase and S(IV) in aerosol solutions, and thereby potentially influence climate. The diurnal cycle of gas-phase Br and the corresponding particulate Br deficits are correlated. Higher values of Br in the gas phase during daytime are consistent with expectations based on photochemistry. We expect that the importance of inorganic Br cycling will vary in the future as a function of both increasing acidification of the atmosphere (through anthropogenic emissions) and climate changes. The latter affects bromine cycling via meteorological factors including global wind fields (and the associated production of sea-salt aerosol), temperature, and relative humidity

    Inorganic chlorine and bromine in coastal New England air during summer

    Get PDF
    During summer 2004, a comprehensive suite of reactive trace gases (including halogen radicals and precursors, ozone, reactive N, soluble acids, and hydrocarbons), the chemical and physical characteristics of size‐resolved aerosols, actinic flux, and related physical conditions were measured at Appledore Island, Maine, as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). Sea‐salt mass averaged 4 to 8 times lower than that over the open North Atlantic Ocean. Production in association with sea salt was the primary source for inorganic Cl and Br. Acid displacement of sea‐salt Cl− primarily by HNO3 sustained high HCl mixing ratios (often \u3e2000 pptv) during daytime. Median pHs for the larger sea‐salt size fractions (geometric mean diameters, GMDs ≥ 2.9 μm) ranged from 3.1 to 3.4; median pHs for sub‐μm size fractions were ≤ 1.6. Cl* (including HOCl and Cl2) ranged from \u3c20 to 421 pptv Cl but was less than the detection limit (DL) during most sampling intervals. Periods during which Cl* was consistently detectable corresponded to relatively clean conditions, multiday transport over water, and relatively low actinic flux. At high HCl mixing ratios (\u3e1000 pptv), HCl + OH sustained steady state Cl‐atom concentrations in the range of 104 cm−3. When detectable, photolysis of Cl* was generally the dominant source of atomic Cl; steady state concentrations of Cl atoms were frequently in the range of 104 to 105 cm−3. At these concentrations, Cl played an important role in the chemical evolution of polluted coastal air. Br radical chemistry was relatively unimportant
    corecore