23 research outputs found

    Evaluation of the inter-annual variability of stratospheric chemical composition in chemistry-climate models using ground-based multi species time series

    Get PDF
    The variability of stratospheric chemical composition occurs on a broad spectrum of timescales, ranging from day to decades. A large part of the variability appears to be driven by external forcings such as volcanic aerosols, solar activity, halogen loading, levels of greenhouse gases (GHG), and modes of climate variability (quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO)). We estimate the contributions of different external forcings to the interannual variability of stratospheric chemical composition and evaluate how well 3-D chemistry-climate models (CCMs) can reproduce the observed response-forcing relationships. We carry out multivariate regression analyses on long time series of observed and simulated time series of several traces gases in order to estimate the contributions of individual forcings and unforced variability to their internannual variability. The observations are typically decadal time series of ground-based data from the international Network for the Detection of Atmospheric Composition Change (NDACC) and the CCM simulations are taken from the CCMVal-2 REF-B1 simulations database. The chemical species considered are column O3, HCl, NO2, and N2O. We check the consistency between observations and model simulations in terms of the forced and internal components of the total interannual variability (externally forced variability and internal variability) and identify the driving factors in the interannual variations of stratospheric chemical composition over NDACC measurement sites. Overall, there is a reasonably good agreement between regression results from models and observations regarding the externally forced interannual variability. A much larger fraction of the observed and modelled interannual variability is explained by external forcings in the tropics than in the extratropics, notably in polar regions. CCMs are able to reproduce the amplitudes of responses in chemical composition to specific external forcings. However, CCMs tend to underestimate very substantially the internal variability and hence the total interannual variability for almost all species considered. This lack of internal variability in CCMs might partly originate from the surface forcing of these CCMs by analysed SSTs. The results illustrate the potential of NDACC ground-based observations for evaluating CCMs

    Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Blood Purif

    No full text
    Background: An altered immune response and decreased vaccine response are observed in patients with chronic renal failure. A preliminary study of 15 non-immunised patients, despite appropriate previous hepatitis B vaccination, showed a 60% seroconversion rate after 3 months of dialysis with a polymethylmethacrylate (PMMA) membrane. This response was associated with circulating soluble CD40 (CD40s) decrease, a natural inhibitor of the humoral immune response. The aim of the study is to confirm these results in a randomised study. Methods: We conducted a multicentre randomised intention-to-treat superiority clinical trial comparing polysulfone and a PMMA membrane in 2 parallel patient groups. The primary end point was the vaccine response rate, as defined by an anti-HBs antibodies titre of >10 IU/L, 1 month after the last vaccination with a double dose of Engerix B20®, performed at weeks 12, 16, 20, and 36. Results: Twenty-five patients were randomised and included in an intention-to-treat analysis. They were dialysed on polysulfone (n = 11) or PMMA (n = 14) for 40 weeks. Fifty percent of the PMMA patients versus 54.5% of the polysulfone patients achieved seroconversion (p = 1.00). The median anti-HBs antibody titre in responders at week 40 was 496 (92–750) versus 395 (43–572) UI/mL for PMMA and polysulfone, respectively (p = 0.46). The median CD40s titre at week 12 was 306 (193–448) versus 491 (281–515) pg/mL (p = 0.21). The CD40s median variation between week 0 and week 12 was 5 (–105 to 90) versus 64 (–63 to 123) pg/mL (p = 0.55). The CD40s level at week 12 in non-responders was slightly inferior to that of the responders: median 193 (168–331) versus 413 (281–512) pg/mL (p = 0.08). Conclusion: We did not observe a better vaccine response with the PMMA membrane compared to high-flux polysulfone. The PMMA membrane did not decrease the CD40s more than the polysulfone membrane probably because the titre was previously low in the 2 groups

    Geophysical Validation of SCIAMACHY NO2 Vertical Columns: Overview of Early 2004 Results.

    No full text
    Following the recommendations drawn after the Commissioning Phase of the ENVISAT satellite in 2002, SCIAMACHY near real time data processors were upgraded to version 5.01 in early 2004. Before public release of the new SCIAMACHY nitrogen dioxide (NO2) vertical column data product, several validation teams investigated its improvement and assessed its geophysical consistency by means of correlative studies involving NDSC-affiliated groundbased networks of DOAS UV-visible and FTIR spectrometers and the ERS-2 GOME satellite. In parallel, preliminary SCIAMACHY NO2 column data products generated by research processors under development at scientific institutes were also tested, using the same correlative data and validation procedures. Digesting the results obtained by a list of validation teams and SCIAMACHY data processing teams, this overview paper draws a preliminary quality assessment of the SCIAMACHY NO2 column data sets available in spring 2004

    Combined characterisation of GOME and TOMS total ozone measurements from space using ground-based observations from the NDSC

    No full text
    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe TOMS, and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both GOME and TOMS several sources of discrepancies: (i) a SZA dependence with TOMS beyond 80° SZA; (ii) a seasonal SZA dependence with GOME beyond 70° SZA; (iii) a difference of sensitivity with GOME at high latitudes; (iv) a difference of sensitivity to low ozone values between satellite and SAOZ sensors around the southern tropics; (v) a north/south difference of TOMS with the ground-based observations; and (vi) internal inconsistencies in GOME total ozon

    Technical Note: Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne instruments

    No full text
    The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR) and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System) instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band), and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement). In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC) and balloon flight missions conducted by the Canadian Space Agency (CSA), the Laboratoire de Physique et de Chimie de l'{}Environnement (LPCE, Orléans, France), and the Service d'Aéronomie (SA, Paris, France). Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km) within −0.3±0.2 ppmv (bias±standard deviation) for SMR (v222, v2.1) and within −0.5±0.2 ppmv for OSIRIS (v3.0). Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments) yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv for the OSIRIS data. Finally the comparisons with instruments on large balloons (10–31 km) show a good agreement, within −0.7±1 ppmv. The official SMR v2.1 dataset is consistent in all altitude ranges with POAM III, NDACC and large balloon-borne instruments measurements. In the SMR v2.1 data, no different systematic error has been found in the 0–35km range in comparison with the 35–60 km range. The same feature has been highlighted in both hemispheres in SMR v2.1/POAM III intercomparisons, and no latitudinal dependence has been revealed in SMR v2.1/NDACC intercomparisons
    corecore