806 research outputs found

    The mechanics of solids in the plastically-deformable state

    Get PDF
    The mechanics of continua, which is based on the general stress model of Cauchy, up to the present has almost exclusively been applied to liquid and solid elastic bodies. Saint-Venant has developed a theory for the plastic or remaining form changes of solids, but it does not give the required number of equations for determining motion. A complete set of equations of motion for plastic deformable bodies is derived. This is done within the framework of Cauch mechanics. And it is supported by certain experimental facts which characterize the range of applications

    Pure-radiation gravitational fields with a simple twist and a Killing vector

    Get PDF
    Pure-radiation solutions are found, exploiting the analogy with the Euler- Darboux equation for aligned colliding plane waves and the Euler-Tricomi equation in hydrodynamics of two-dimensional flow. They do not depend on one of the spacelike coordinates and comprise the Hauser solution as a special subcase.Comment: revtex, 9 page

    High shock release in ultrafast laser irradiated metals: Scenario for material ejection

    Get PDF
    We present one-dimensional numerical simulations describing the behavior of solid matter exposed to subpicosecond near infrared pulsed laser radiation. We point out to the role of strong isochoric heating as a mechanism for producing highly non-equilibrium thermodynamic states. In the case of metals, the conditions of material ejection from the surface are discussed in a hydrodynamic context, allowing correlation of the thermodynamic features with ablation mechanisms. A convenient synthetic representation of the thermodynamic processes is presented, emphasizing different competitive pathways of material ejection. Based on the study of the relaxation and cooling processes which constrain the system to follow original thermodynamic paths, we establish that the metal surface can exhibit several kinds of phase evolution which can result in phase explosion or fragmentation. An estimation of the amount of material exceeding the specific energy required for melting is reported for copper and aluminum and a theoretical value of the limit-size of the recast material after ultrashort laser irradiation is determined. Ablation by mechanical fragmentation is also analysed and compared to experimental data for aluminum subjected to high tensile pressures and ultrafast loading rates. Spallation is expected to occur at the rear surface of the aluminum foils and a comparison with simulation results can determine a spall strength value related to high strain rates

    Supersymmetric version of a hydrodynamic system in Riemann invariants and its solutions

    Full text link
    In this paper, a supersymmetric extension of a system of hydrodynamic type equations involving Riemann invariants is formulated in terms of a superspace and superfield formalism. The symmetry properties of both the classical and supersymmetric versions of this hydrodynamical model are analyzed through the use of group-theoretical methods applied to partial differential equations involving both bosonic and fermionic variables. More specifically, we compute the Lie superalgebras of both models and perform classifications of their respective subalgebras. A systematic use of the subalgebra structures allow us to construct several classes of invariant solutions, including travelling waves, centered waves and solutions involving monomials, exponentials and radicals.Comment: 30 page

    Identifying Near Earth Object Families

    Full text link
    The study of asteroid families has provided tremendous insight into the forces that sculpted the main belt and continue to drive the collisional and dynamical evolution of asteroids. The identification of asteroid families within the NEO population could provide a similar boon to studies of their formation and interiors. In this study we examine the purported identification of NEO families by Drummond (2000) and conclude that it is unlikely that they are anything more than random fluctuations in the distribution of NEO osculating orbital elements. We arrive at this conclusion after examining the expected formation rate of NEO families, the identification of NEO groups in synthetic populations that contain no genetically related NEOs, the orbital evolution of the largest association identified by Drummond (2000), and the decoherence of synthetic NEO families intended to reproduce the observed members of the same association. These studies allowed us to identify a new criterion that can be used to select real NEO families for further study in future analyses, based on the ratio of the number of pairs and the size of strings to the number of objects in an identified association.Comment: Accepted for publication in Icarus. 19 pages including 11 figure

    Multimode solutions of first-order elliptic quasilinear systems obtained from Riemann invariants

    Full text link
    Two new approaches to solving first-order quasilinear elliptic systems of PDEs in many dimensions are proposed. The first method is based on an analysis of multimode solutions expressible in terms of Riemann invariants, based on links between two techniques, that of the symmetry reduction method and of the generalized method of characteristics. A variant of the conditional symmetry method for constructing this type of solution is proposed. A specific feature of that approach is an algebraic-geometric point of view, which allows the introduction of specific first-order side conditions consistent with the original system of PDEs, leading to a generalization of the Riemann invariant method for solving elliptic homogeneous systems of PDEs. A further generalization of the Riemann invariants method to the case of inhomogeneous systems, based on the introduction of specific rotation matrices, enables us to weaken the integrability condition. It allows us to establish a connection between the structure of the set of integral elements and the possibility of constructing specific classes of simple mode solutions. These theoretical considerations are illustrated by the examples of an ideal plastic flow in its elliptic region and a system describing a nonlinear interaction of waves and particles. Several new classes of solutions are obtained in explicit form, including the general integral for the latter system of equations

    Generalized probabilities taking values in non-Archimedean fields and topological groups

    Full text link
    We develop an analogue of probability theory for probabilities taking values in topological groups. We generalize Kolmogorov's method of axiomatization of probability theory: main distinguishing features of frequency probabilities are taken as axioms in the measure-theoretic approach. We also present a review of non-Kolmogorovian probabilistic models including models with negative, complex, and pp-adic valued probabilities. The latter model is discussed in details. The introduction of pp-adic (as well as more general non-Archimedean) probabilities is one of the main motivations for consideration of generalized probabilities taking values in topological groups which are distinct from the field of real numbers. We discuss applications of non-Kolmogorovian models in physics and cognitive sciences. An important part of this paper is devoted to statistical interpretation of probabilities taking values in topological groups (and in particular in non-Archimedean fields)

    Commensurability and beyond: from Mises and Neurath to the future of the socialist calculation debate

    Get PDF
    Mises' 'calculation argument' against socialism argues that monetary calculation is indispensable as a commensurable unit for evaluating factors of production. This is not due to his conception of rationality being purely 'algorithmic,' for it accommodates non-monetary, incommensurable values. Commensurability is needed, rather, as an aid in the face of economic complexity. The socialist Neurath's response to Mises is unsatisfactory in rejecting the need to explore possible non-market techniques for achieving a certain degree of commensurability. Yet Neurath's contribution is valuable in emphasizing the need for a balanced, comparative approach to the question of market versus non-market that puts the commensurability question in context. These central issues raised by adversaries in the early socialist calculation debate have continued relevance for the contemporary discussion

    Atomistic Studies of Defect Nucleation during Nanoindentation of Au (001)

    Get PDF
    Atomistic studies are carried out to investigate the formation and evolution of defects during nanoindentation of a gold crystal. The results in this theoretical study complement the experimental investigations [J. D. Kiely and J. E. Houston, Phys. Rev. B, v57, 12588 (1998)] extremely well. The defects are produced by a three step mechanism involving nucleation, glide and reaction of Shockley partials on the {111} slip planes noncoplanar with the indented surface. We have observed that slip is in the directions along which the resolved shear stress has reached the critical value of approximately 2 GPa. The first yield occurs when the shear stresses reach this critical value on all the {111} planes involved in the formation of the defect. The phenomenon of strain hardening is observed due to the sessile stair-rods produced by the zipping of the partials. The dislocation locks produced during the second yield give rise to permanent deformation after retraction.Comment: 11 pages, 13 figures, submitted to Physical Review
    • …
    corecore