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This article leads to a complete set of equations
of motion for plastic-deformable bodies, within the
framework of Cauchy mechanics and which is supported by
certain experimental facts which characterize the range
of applications.
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The Mechanics of Solids in the Plastically-Deformable State

R. v. Mises*

The mechanics of continua, which is based on the general	 /582

stress model of Cauchy, up to the present has almost exclusively

been applied to liquid and solid elastic bodies. Saint-Venant

[1] has developed a theory for the plastic or remaining form

changes of solids, but it does not give the required number of

equations for determining the motion. Other attempts in this

direction have not led to any conclusion

The following article leads to a complete set of equations

of motion for plastic-deformable bodies, within the framework

of Cauchy mechanics and which is supported by certain experi-

mental facts which characterize the range of applications.
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r
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1. Notation

The state of stress in a point of a body is assumed to be

given by the three normal stresses 0., 6#9 6.	 and the tangential

stresses VA" rg t s,. , assuming a rectangular coordinate system. 	 .

In the diagram 	 /583

s, s, sy	
(1)

the quantities in the first line mean the components of the stress

vector a, for the surface element, whose other normal has the

direction of the positive x axis, etc. The vector complex

*Presented by C. Runge at the meeting of November 1, 1913,
with four figures in the text.

#Haar and v. Kdrmdn, G8ttinger Nachr. 1909, derive equations
of motion from a new variational principle, but its relationship
to the rest of mechanics has not yet been clarified.
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(5)

represented by (w), which as is well known can be transformed

according to the equation

e^% .^ e• COs (X, se) ♦ tr COs	 ♦ F. Go$ (r, X)
	

(2)

will be called the stress dyad
A similar concept leads to the deformation dyad

and the dyad of the deformation rate r 	 Tf 1PVo t are the
infinitesimally small elastic displacements of a point, then

the strains and the angular changes are equal, to

A t 	 ail	 at ,
r, ax ,r a;, , E, aj

n = .1 69 + at	 I
Yr	

a at +
	 ^. = 1 Oy

—t a^ 1,	 (3)

2 {a. ay, " 2^a^ a.^	 2 + Ox)'

and the dyad	 has the diagram

4 Y. Yr	
(4)

T, or Y•

)'r Y. •.

If instead of t,+lrt one uses the components u, v, w of the velocity
vector, then one obtains the strain and shear rates

k

^• = aa•' ^r	 a0 , ,	 I ,
ax	 ON '^	 do

aV ago	 LWau	 i au av
''• s 2 as + ay ''r ,	 {ax + a^' ''• ° 2 ay + ar^

2



Figure 1.

and the diagram for the dyad r: :

A, We v,

V. x'l v:
	

(F)

I's, V. Ar

For each dyad there is at least one coordinate system,

for which the diagram is reduced to the terms of the principal

diagonal, for example for (1) this leads to the form:

d, 0 0

0 Q. 0

0 0 a..

Here the "principal stresses" d„ d,,dp are the square roots

of the secular equation or determined by the following three

3
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Ix ♦ Ii M 69+01♦91

(8)

If a coordinate system is placed in such a manner that the

z axis coincides with the third principal axis, whereas the x

and y axes bisect the angles of the first two principal axes

(Figure 1) , then the following diagram, results because of (2) :

61 +90.	 Q,-d"

S ' 8 ' 0

09-61 ^ 6
'2
° ' 0	 (9)

0,	 01	 e,.

At the same time one can see that the s- values which occur

here are extremes of the tangential stress, i.e., among the

three quantities

one always has 'the absolutely "largest and absolutely smallest

tangential stress. The quantities s„sg ,s,, are called the main

(10)

/585
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tangential stresses, and their gum equals zero.
The simplest of all stress dyads is the one for the .ideal

liquid -F. . In any coordinate system it has the diagram

-p 0 h

	

0 -p U	
(11)0 0 -P,

If one subtracts a stress state of the form (11) from the

stresses represented by (1), then the tangential stresses

remain unchanged, and we obtain a diagram

e, s, to
f^ 0y, fa

(12)

where

Q: - 6. +ys s, -	 or + Nf Q: - Q, + P.	 (13)

The dyad (12) has the same principal directions as (1), and
the principal values- @,v;odo' are the principal values of (1)

reduced by -p. Then according to (10) the principal tangential
stresses for (12) and (1) are identical.

All of these relationships, of course, also apply for the

deformation dyad ^`` or for 	 1.1	 We will now - give a formula

which is used in applications, from which we will -derive a

5
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(a) All solids behave like elastic bodies for sufficiently

small stresses: there is a one- to-one correspondence between

stress and deformation.

With this theorem, we delineate solids with respect

to viscous materials. "Solid" is, for example, wax, which will

yield even for a small external pressure. Also iron is included,

which only reaches the elastic limit under a very high pressure.

On the other hand, materials like tar at normal temperature are

not plastically deformable, but are liquid.

We will discuss the importance and the form of the

elastic limit below.

The connection between the stress dyad and the del

tion dyad a and = assumes that the mathematical theorl

elasticity is linear, as is well -known:

6

,.^.......4 -
In

relationship between (10) and ( 8): We have

MIA_,600+IOL-ILI +168-0A2+101+4+:D.
	 (14)

2. Fundamentals Due To Experience

We will now introduce those factors from our experience

which the equations of motion to follow take into account.

We do not attempt to give an axiomatic development, in other

words, we are not intent in using a minimum of assumptions.



i

The most general linear relationship, in which no direction in

space is preferred, consists of assuming that the two dyads

have the same principal directions and that the principal values

are related as follows;

+ A (to + t. + is) 0 C. on me. + P 01 + to + t.) r

g. M 610+06 +86 + 8J. 	 (16)

Here	 a and p are the elastic constants. As is

well-known, (16) can be converted so that relationships between

the components referred to arbitrary axes can be created.

(b) If the limit of elasticity is reached, then the solid

behaves essentially like a viscous and almost incompressible

liquid.

The behavior of the liquid intended here is character-

ized by the fact that it is not the deformation state, as is

the case for the elastic body, but the deformation process which

causes stresses. However, one cannot simply assume that the

stress dyad a is a function of the deformation-rate dyad1

Instead one has to consider that a volume under a uniform

pressure does not experience any finite deformation rate. The

volume change which occurs remains always of the order of magni-

tude of the elastic displacements, as many observations have

shown.

Therefore it follows that in the mechanics of viscous

fluids, one has to subtract a part —1. from the stress dya

M , which corresponds to a uniform pressure in all direc

The remainder 'M (See (12) in paragraph l.) can be assumed

be a linear function

i

x

s.



	

If one considers the same symmetry as above, then similar to	 /587

(16) we obtain:

1o' "n kAs + F (k, + Is + Q, ...
	 (l8)

However, the expression in parentheses is exactly the divergence

or volume change, which we just discussed and which can be ignored

compared with 'I . In this way we obtain-,

OI s No r ' #@I ow ka. r Ii '^ kA,.
	 (19)

These equations state that P can be found from 	 , if one

multiplies every component of r by k;

+ — k4  er s er+p a kAi, ti = s +p am kA,;	 (20)
s, — kv,r s,—kv,> s,:kv,

These are exactly the same equations which the Navier-Stokes

theory of viscous fluids obtains. An important difference will

only occur if we investigate the meaning of the quantity k

more closely. This is done by using the following experimental

theorem.

c) If one changes the absolute value of the speeds with

which a motion proceeds, while maintaining all ratios, then in

the case of plastically deformable bodies the work does not
change which is required to achieve a certain form change.

This theorem is derived from the totality of the

observational material, which has been obtained in research

remaining form changes, that is, technology. For the most p+

8
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technology uses formulas for the work, which to begin with do
not consider the influence of the speed. Wherever this influence
has been observed, it was found to be very small. * . The constant
quantities discussed in theorem c) will have to be interpreted

similar to the constant nature of the friction coefficients with

respect to alternating normal pressure during C'ta sliding friction
of solids. In any case, using the assumption c) we have defined

an ideal case, which will then allow a certain theory,and which

represents a useful approximation for the actual behavior of bodies.

The work to be expended per volume and second is in
general given by:

+ ^+0..1.+2r.vr#gsa,v$,+2%v. s	 (21)	 /588

If all speeds are multiplied by a factor of c, then this expression
changes in proportion to kc 2 . At the same time, the duration of

the deformation process is reduced by a ratio of 1 : c, and the

total work is proportional to kc. That means that the propor-

tionality factor k introduced in (20) has to be inversely

proportional to the speed. Or, stated differently: the stress

dyad V remains the same, when all components of 	 are reduced
by the same ratio.

From the last formulation it follows that the stresses

in a plastically deformable body must vary in a region of reduced
multiplicity, compared with elastic bodies. It is clear that

range can be nothing else than the limit of elasticity. That

*Individual proofs, also references, can be found in my
Encyclopedia article IV 10, Nr. 5, p. 187.

9
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Figure 2.

means that our theorem c) can also be formulated as follows;

c') In the case of plastic deformations, the stress always

remains at the limit of elasticity.

This theorem includes the requirement that the elastic

limit must be independent from an additive term of the form (11)

(see below),

The theorem c') can be directly confirmed by observations.

in the one-dimensional case of a tension load on a rod, the stress-

strain diagram according to c') would have to take on the form

shown in Figure 2t first an inclined line for the elastic state,

then a horizontal limit stress in the plastic region, which

accordingly is independent of speed. The observation shows that

in the case of iron, steel and similar materials, there is a

horizontal segment which comes after the inclined line, but
soon it is transformed into a slightly rising line. This ca

attributed to a process which is related to the crystalline

nature of the body and which is a highly thermal process, wh

is called "solidification". This solidification is now not

considered by our theory. However, we have to consider the

10
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following: The real range of application of the theory of

plasticity is in the area of pressure loads (positive p).

Xt has not yet been clarified whether under pressure, iron and

similar materials experience such a solidification. In any

case, it does not seem unlikely that for materials which are

easily deformed, for example, wax and others, "solidification"

is a very unimportant factor.

We will now discuss a last theorem which involves

the nature of the elastic limit:

r5$9

d) in a coordinate system which has the coordinates of

the principal tangential stresses, the elastic limit is in

the form of a closed curve in the following plane;

ss +we +% 0- 0.	 (22)

and this curve includes the origin.

As is well )mown, O. Mohr, gave the first detailed in-

vestigations about the elastic limit and the fracture limit [2].

According to Mohr, this only depends on the largest and smallest

of the three principal stresses, and let us call them s,' and

so . in a coordinate system:

X	
0^

+0 	 a f^ —d^"'.. 
r y ^— = —T S

the fracture limit has the appearance shown in Figure 3 if

one considers the experiments of von Karman in addition to

those of Mohr [ 3]. The greatest difference between the

behavior for positive x (tension) and negative (pressure) is

11
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Figure 3.

Figure 4.

due to the fact that tearing occurs for tension in all directions,

but there is no compression deformation for uniform pressure.

Therefore, it is not very likely that there is an analog difference

for the limit of the elastic behavior. In addition, since we

are primarily concerned with states with a large average pressure,

12



it will be allowable to assume that the horizontal asymptotes 	 i
of Figure 3 are the important boundaries. This often	 /590	 .'
mentioned assumption leads to the elastic limit:

(24)

I *.I : x0 	I T.I S K

The cube (24) is intercepted by the plane (22) in a

reguluY Hexagon (Figure 4.), so that our condition d) is

satisfied.

We will now modify the Mohr theorem in another

direction. Only the corners of the hexagon (22), (24) have

been specified by experiments up to the present. These are

states where one of the i is zero, and the absolute values of
the other two are the same. A straight line connection is

derived from the assumption that the average principal stress

or the smaller principal tangential stresses are not important

at all. This assumption does not seem to be that plausible

so that one could 	 consider replacing the hexagon by a simpler

curve, that is, a circle which circumscribes it. Instead of the

cube (24), one then has the sphere:

to, + t:+ste — 28'.	 (25)

In any case,(25) allows a much simpler analytical treatment,

and the difference with respect to (24) is not much greater than

the range of certainty of experiments performed up to the present.

3. Equations of Motion

The quantity #^ will be called the specific mass of the body,

and x. ► xro x. are the components of the specific volume force

13



k.

(gravity, etc.). Then the equations of motion are, in any case:

rr

du
°ax— 

ap ad;	 of,
+	 +ex + 

a E

°J s xV -ay +s' + y+ag
° dw

dt
s C _ ap

ds
+ a^L 4. afs

dz	 ay
+ ad, .

as

tI)

The six stress components do—ir, are expressed according to

(20) and (5) by the three velocities u, v, w as follows:

kas,	 kay+s:"kaz'
	

(II)

ev

s•=}k(as+ay!'f^^ }k1ax +as), 	 (LU

In order to eliminate p, we can use the continuity equation,

just like in hydromechanics

(III)
du + av + duo . 0
ix- OF as

Here we have assumed incompressibility according to theorem U%

and the related assumptions. However, within the framewor)

our theory, we could very easily treat the more general ca:

The assumption (I) to (III) agrees completely with the

one for viscous liquids, but there the quantity k is the gi

14
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viscosity coefficient, and in our case it is a reaction variable,

which can only be calculated by knowing the motion itself. For

this we use the theorem that the stress remains at the limit of

elasticity during plastic deformation.

If one assumes the boundary to be a circle in the form (25),

and if we substitute the value (14), then one obtains:

(t;+ elf +0:r-8(Q: Ott + got, s,+e;ea+8(s."+sm,+0.) 	 4g'•	 (26)

From the last form of expression (14), it follows that the

quantities Q can be replaced by the variable e'	 If one

adds the first three of equations (II), and if we consider

(III), then we find:

so that (26)  is reduced to:

(IV)
48 — t+t;+ W-(asQ,-I-a^a+^: Q^)•

If here one substitutes the values from (II), then one

obtains the desired equation for k. The equations (I) through

(IV) are the complete system of equations of motion for plastic-

deformable bodies.
As a boundary condition we have to add the following:

The specification of the velocity components u, v, w for any

surface point. This can be replaced over the entire surface

or over part of it by specifying the surface stress.

15
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/592
a

in the case of plane motion, our theorem is reduced to the

theorem of Saint-Venant. This is partly due to the fact that

in the plane case, the difference between the elastic limit

according to (24) (hexagon) or according to (26) ( circle)

vanishes. This is because one only has two principal tangential
stresses fitt.. with

T. + To = of
	

(28)

so that s;+ t; ;S 2K' says the same as 	 I To I ^ jr, I
T
. I Ŵ-- X

Equations (I) through ( IV) can very easily be written in

terms of vector notation. If F, is the velocity vector,

the vector of specific force, then we have:

grad p + Off', 	 (I ' )(II' )i' =kr,
div F = 0,	

(III' )

— MI = 8

Here the quantity O in (I') is the differentiation to be
performed on the dyad, determined by M. The index 2 in

(IV') is intended to indicate that out of the dyad T one

must take the second orthogonal invariant shown in equation (8)

of paragraph 1.

From W) to (IV') one can also easily eliminate T ,

16
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A

T

and one obtains:

P^ — it — gead p+p (k1)v	 (a)

div v — 0,	 (b)
4$

If one performs scalar multiplication of (V) and v

and integrates with respect to volume, then one finds that the

dissipation function is represented by (21) after carrying out

the corresponding conversion. This therefore proves the agree-

ment of the theorem with our assumption c) in paragraph 2.

Strapburg i. E., October 4, 1913.
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