In this paper, a supersymmetric extension of a system of hydrodynamic type
equations involving Riemann invariants is formulated in terms of a superspace
and superfield formalism. The symmetry properties of both the classical and
supersymmetric versions of this hydrodynamical model are analyzed through the
use of group-theoretical methods applied to partial differential equations
involving both bosonic and fermionic variables. More specifically, we compute
the Lie superalgebras of both models and perform classifications of their
respective subalgebras. A systematic use of the subalgebra structures allow us
to construct several classes of invariant solutions, including travelling
waves, centered waves and solutions involving monomials, exponentials and
radicals.Comment: 30 page