309 research outputs found

    Approximate approximations from scattered data

    Get PDF
    AbstractThe aim of this paper is to extend the approximate quasi-interpolation on a uniform grid by dilated shifts of a smooth and rapidly decaying function to scattered data quasi-interpolation. It is shown that high order approximation of smooth functions up to some prescribed accuracy is possible, if the basis functions, which are centered at the scattered nodes, are multiplied by suitable polynomials such that their sum is an approximate partition of unity. For Gaussian functions we propose a method to construct the approximate partition of unity and describe an application of the new quasi-interpolation approach to the cubature of multi-dimensional integral operators

    Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group

    Full text link
    We prove geometric LpL^p versions of Hardy's inequality for the sub-elliptic Laplacian on convex domains Ω\Omega in the Heisenberg group Hn\mathbb{H}^n, where convex is meant in the Euclidean sense. When p=2p=2 and Ω\Omega is the half-space given by ⟚Ο,Μ⟩>d\langle \xi, \nu\rangle > d this generalizes an inequality previously obtained by Luan and Yang. For such pp and Ω\Omega the inequality is sharp and takes the form \begin{equation} \int_\Omega |\nabla_{\mathbb{H}^n}u|^2 \, d\xi \geq \frac{1}{4}\int_{\Omega} \sum_{i=1}^n\frac{\langle X_i(\xi), \nu\rangle^2+\langle Y_i(\xi), \nu\rangle^2}{\textrm{dist}(\xi, \partial \Omega)^2}|u|^2\, d\xi, \end{equation} where dist( ⋅ ,∂Ω)\textrm{dist}(\, \cdot\,, \partial \Omega) denotes the Euclidean distance from ∂Ω\partial \Omega.Comment: 14 page

    The H\"older-Poincar\'e Duality for Lq,pL_{q,p}-cohomology

    Get PDF
    We prove the following version of Poincare duality for reduced Lq,pL_{q,p}-cohomology: For any 1<q,p<∞1<q,p<\infty, the Lq,pL_{q,p}-cohomology of a Riemannian manifold is in duality with the interior Lpâ€Č,qâ€Č−cohomologyforL_{p',q'}-cohomology for 1/p+1/p'=1,, 1/q+1/q'=1$.Comment: 21 page

    Fractional Sobolev-Poincaré inequalities in irregular domains

    Get PDF
    This paper is devoted to the study of fractional (q, p)-Sobolev-PoincarĂ© in- equalities in irregular domains. In particular, the author establishes (essentially) sharp fractional (q, p)-Sobolev-PoincarĂ© inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional (q, p)-Sobolev-PoincarĂ© inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P., Sobolev-PoincarĂ© implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out

    Results on entire solutions for a degenerate critical elliptic equation with anisotropic coefficients

    Full text link
    In this paper, we study the following degenerate critical elliptic equations with anisotropic coefficients −div(∣xN∣2α∇u)=K(x)∣xNâˆŁÎ±â‹…2∗(s)−s∣u∣2∗(s)−2uinRN -div(|x_{N}|^{2\alpha}\nabla u)=K(x)|x_{N}|^{\alpha\cdot 2^{*}(s)-s}|u|^{2^{*}(s)-2}u {in} \mathbb{R}^{N} where x=(x1,...,xN)∈RN,x=(x_{1},...,x_{N})\in\mathbb{R}^{N}, N≄3,N\geq 3, α>1/2,\alpha>1/2, 0≀s≀20\leq s\leq 2 and 2∗(s)=2(N−s)/(N−2).2^{*}(s)=2(N-s)/(N-2). Some basic properties of the degenerate elliptic operator −div(∣xN∣2α∇u)-div(|x_{N}|^{2\alpha}\nabla u) are investigated and some regularity, symmetry and uniqueness results for entire solutions of this equation are obtained. We also get some variational identities for solutions of this equation. As a consequence, we obtain some nonexistence results for solutions of this equation.Comment: 29 page

    COMPETITIVE OR WEAK COOPERATIVE STOCHASTIC LOTKA-VOLTERRA SYSTEMS CONDITIONED TO NON-EXTINCTION

    Get PDF
    International audienceWe are interested in the long time behavior of a two-type density-dependent biological population conditioned to non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned to non extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a dd-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species
    • 

    corecore