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Abstract

The Dirichlet boundary value problem for the Stokes operator with Lp data
in any dimension on domains with conical singularity (not necessary a Lipschitz
graph) is considered. We establish the solvability of the problem for all p ∈
(2− ε,∞] and also its solvability in C(D) for the data in C(∂D).
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1 Introduction

In this paper we study the Stokes system (which is the linearized version of the
stationary Navier-Stokes system) on a fixed domain D ⊂ R

n, for n ≥ 3. In fact,
we establish our result for a both Lamé system (ν < 1/2) and the Stokes system
(ν = 1/2).

We want to consider a classical question of the solvability of the Lp Dirichlet
problem on the domain D.

Let us recall that the Dirichlet problem for the system (1.1) is Lp solvable on
the domain D if for all vector fields f ∈ Lp(∂D) there is a pair of (u, p) (here
u : D → R

n, p : D → R) such that

−∆u+∇p = 0, div u+ (1− 2ν)p = 0 in D, (1.1)

u
∣∣
∂D

= f almost everywhere,

u∗ ∈ Lp(∂D),

∗Mathematics Subject Classifications: 35J57, 35J47
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and moreover for some C > 0 independent of f the estimate

‖u∗‖Lp(∂D) ≤ C‖f‖Lp(∂D) holds.

Here, the boundary values of u are understood in the nontangential sense,
that is we take the limit

u
∣∣
∂D

(x) = lim
y→x, y∈Γ(x)

u(y),

over a collection of interior nontangential cones Γ(x) of the same aperture and
height and vertex at x ∈ ∂D and u∗ is the classical nontangential maximal
function defined as

u∗(x) = sup
y∈Γ(x)

|u(y)|, for all x ∈ ∂D.

Furthermore, we say that the Dirichlet problem (1.1) is solvable for continuous
data, if for all f ∈ C(∂D) the vector field u belongs to C(D) and the estimate

‖u‖C(D) ≤ C‖f‖C(∂D) holds.

So far, we have not said anything about the domain D, except the require-
ment on the existence of the interior nontangential cones Γ(x) ⊂ D of the same
aperture and height at every boundary point x ∈ ∂D. For symmetry reasons let
us also assume the existence of exterior (i.e. in R

n \D) nontangential cones, as
well as that the domain D is bounded.

A most classical example of a domain D that satisfies these assumptions is a
Lipschitz domain which is a domain for which the boundary ∂D can be locally
described as a graph of a Lipschitz function.

Another important class of domains satisfying outlined assumptions are so-
called generalized polyhedral domains (see [11] and [13]). The precise definition
is rather complicated and unnecessary for our purposes what we have in mind
are domains that look like polyhedra, however we allow the sides or edges to
be curved not just flat. For example, in two dimensions the boundary of such
domain will consist of a finite set of vertices joined by C1 curves meeting at the
vertices nontransversally.

At the first sight, one might assume that the class of generalized polyhedral
domains is a subset of the class of Lipschitz domains. This is however only true
when n = 2, when n > 3 it is no longer the case. Is it however clear that these
classes are related.

The Lp Dirichlet boundary value problem on Lipschitz domains for the Lapla-
cian has a long history starting with pioneering work of Dahlberg [2], Jerison and
Kenig [5]. As follows from these results the Lp Dirichlet boundary problem for
the Laplacian is solvable for all p ∈ (2− ε,∞] regardless of dimension. There are
two key ingredients to establish this result: the so called Rellich estimates (when
p = 2) and the maximum principle (when p = ∞). Interpolating these two leads
to the stated result.

The Stokes (and Lamé) equations are PDE systems not a single (scalar)
equation. This implies that the second ingredient of the above approach is not
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readily available since the maximum principle that holds for PDE equations is
not applicable to general PDE systems. In addition, if we go outside the class of
Lipschitz domains, the Rellich estimates are also not available.

Despite that in low dimensions n = 2, 3 a weak version of the maximum
principle does hold [14] which still allows to prove Lp solvability for all p ∈
(2 − ε,∞], provided the domain is Lipschitz. See [3] or [4] for most up-to date
approach that works even on Riemannian manifolds. See also [1] for regularity
issues related to the Stokes system in Lipschitz domains.

The question whether the same is true if n > 3 is open and only partial range
of p for which the problem is solvable is known.

In this paper we consider the problem outlined above for domains with a single
singular point, a conical vertex. Apart from this point our domain will be smooth.
In three dimensions the situation has been considered in a different context before
[10] where estimates such as (3.33) in three dimensions are established. We
mention also the recent book [13] where strong solutions of the three-dimensional
problem (1.1) and stationary Navier-Stokes equation are studied in detail. Our
approach is general and works in any dimension n. In principle what we present
here is fully extendable to all generalized polyhedral domains. However to avoid
technical challenges we only focus on the particular case of an isolated conical
singularity.

Our main result shows that in the setting described above (a domain with
one conical point) the range of solvability p ∈ (2 − ε,∞] remains true in any
dimension.

As we stated above the classes of Lipschitz and polyhedral domains are related
but neither is a subset of the other. However the result we present is a strong
indication that the range p ∈ (2− ε,∞] should hold even for Lipschitz domains.
In fact, the known counterexamples to solvability in Lp are shared by these two
classes of domains (see [6] for such examples when p < 2).

The paper is organized as follows. In section 2 we establish estimates for
eigenvalues of a certain operator pencil for Lamé and Stokes systems in a cone
that holds in any dimension. These estimates are in the spirit of work done in
[10]. In section 3 we prove estimates for Green’s function that are based upon
section 2 and finally in section 4 we present our main result Theorem 4.1 and
its proof that is based upon the explicit estimates for the Green’s function from
section 3 and interpolation.

2 The operator pencil for Lamé and Stokes

systems in a cone

Let Ω ⊂ S
n−1. Suppose that cap(Sn−1 \Ω) > 0. Then the first eigenvalue of the

Dirichlet problem for the operator −∆Sn−1 in Ω is positive. We represent this
eigenvalue in the form M(M + n− 2), M > 0.

Consider the cone K = {x ∈ R
n; 0 < |x| < ∞, x/|x| ∈ Ω}. Or goal is to

understand the solutions of the system (2.2)-(2.3)

−∆U +∇P = 0, div U + (1− 2ν)P = 0 in K (2.2)
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with the boundary condition

U
∣∣
∂K\{0}

= 0, (2.3)

in the form U(x) = rλ0u(ω), P (x) = rλ0−1p(ω). This requires study of spectral
properties of a certain operator pencil L(λ) defined below (2.9).

Here ν is the so-called the Poisson ratio. If ν < 1/2 the equation (2.2) can
be written in more classical (elasticity) form

∆U + (1− 2ν)−1∇∇ · U = 0 in K. (2.4)

The case ν = 1/2 corresponds to the Stokes system

−∆U +∇P = 0, div U = 0 in K (2.5)

with the boundary condition

U
∣∣
∂K\{0}

= 0. (2.6)

Now we define the pencil. We write (2.2) in the polar form for U = rλ(uu, uω).
After multiplying by r2−λ we obtain:

−∆Sn−1ur − (λ+ 1)(λ+ n− 1)ur −
λ− 1

1− 2ν
[(λ+ n− 1)ur

+ ∇ω · uω] + 2[(λ+ n− 1)ur +∇ω · uω] = 0, (2.7)

and

Luω − (λ+ 1)(λ + n− 1)uω −
1

1− 2ν
[(λ+ n− 1)∇ωur

+ ∇ω(∇ω · uω)] + 2[(λ + n− 1)uω −∇ωur] = 0, (2.8)

where L is the second order differential operator acting on vector fields on S
n−1

that arises from the Navier-Stokes equation on the sphere (L = −∆Sn−1 −
∇ω(∇ω· )− 2 and ∆Sn−1 is the Hodge Laplacian on S

n−1) (see also section 3.2.3
of [9] for the corresponding calculation in three dimensions).

Hence we arrive at the matrix differential operator L(λ)

(
ur
uω

)
= 0, where:

L(λ)

(
ur
uω

)
=

(
−∆Sn−1ur −

2−2ν
1−2ν (λ− 1)(λ+ n− 1)ur +

3−4ν−λ
1−2ν ∇ω · uω

Lνuω − (λ− 1)(λ + n− 1)uω − n+1−4ν+λ
1−2ν ∇ωur

)
.

(2.9)

Here Lν = L − (1 − 2ν)−1∇ω(∇ω· ). This defines the operator pencil. The
pencil operator is self-adjoint if and only if Re λ = −n−2

2 .
From now on we consider arbitrary ν ≤ 1/2. In particular, this includes the

case of the Stokes system we are mostly interested in.
For arbitrary real t consider

φ(t) = (t+1)(t+n−1)(2t+n−2)− (3−4ν− t)(M − t)(M+ t+n−2). (2.10)
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Let t(M) be the smallest solution of the equation

φ(t) = (n− 1)(2t+ n− 2)

in the interval −(n− 2)/2 < t < M . We claim that t(M) > 0.
Indeed, for t in the interval [−(n− 2)/2, 0] we have

φ(t) < (t+ 1)(t+ n− 1)(2t + n− 2) < (n− 1)(2t + n− 2),

hence there is no solution in this interval. On the other hand φ(M) = (M +
1)(M + n − 1)(2M + n − 2) > (n − 1)(2M + n − 2), hence the solution always
exists and is positive.

The following result extends a similar three-dimensional result in [10] (see
also Section 5.5.4 in [9]).

Theorem 2.1 The strip determined by the inequality

∣∣∣∣Re λ+
n− 2

2

∣∣∣∣ < min{1, t(M)} +
n− 2

2
(2.11)

does not contain any eigenvalues of the pencil L(λ) in K, provided ν ≤ 1/2.
What this means is that the boundary value problem (2.2)-(2.3) has no solution
of the form

U(x) = rλ0u(ω), P (x) = rλ0−1p(ω), (2.12)

for λ0 in this strip.

Proof. We will only consider the case when Re λ > −(n− 2)/2. This is enough,
since by Theorem 3.2.1 of [9] λ0 is an eigenvalue of the pencil if and only if
−(n − 2) − λ0 is an eigenvalue. Also there is no eigenvalue on the line Re
λ = −(n− 2)/2.

Let us therefore consider a pair (U,P ) of the form (2.12) that solves the
boundary value problem (2.2)-(2.3) in K. For arbitrary ε > 0 we consider the
domain

Kε = {x ∈ K : ε < |x| < 1/ε}.

Then (2.5) implies

−

∫

Kε

∆U · Udx+

∫

Kε

∇P · Udx = 0.

Integrating by parts and using the equation for the divergence of U we obtain
that

∫

Kε

|∇U |2dx+ εn−1

∫

r=ε
U · ∂rUdω − ε−n+1

∫

r=1/ε
U · ∂rUdω (2.13)

+(1− 2ν)

∫

Kε

|P |2dx− εn−1

∫

r=ε
PU rdω + ε−n+1

∫

r=1/ε
PU rdω = 0.
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Here Ur denotes the radial part of the vector U and dω is the surface measure
on Sn−1. Now using the assumption (2.12) we obtain

∫ 1/ε

ε
r2Reλ0+n−3dr

∫

Ω

(
|∇ωu|

2 + |λ0|
2|u|2 + (1− 2ν)|p|2

)
dω (2.14)

+
(
ε2Re λ0+n−2 − ε−(2Re λ0+n−2)

)(
λ0

∫

Ω
|u|2dω −

∫

Ω
purdω

)
= 0.

We take the real part of equation (2.14) and then integrate in r. This gives us
∫

Ω
|∇ωu|

2dω +
(
(Reλ0)

2 + (Imλ0)
2 − (2Reλ0 + n− 2)Reλ0

) ∫

Ω
|u|2dω

+(1− 2ν)

∫

Ω
|p|2dx + (2Reλ0 + n− 2)Re

∫

Ω
purdω = 0,

which can be simplified to
∫

Ω
|∇ωu|

2dω +
(
(Imλ0)

2 −Reλ0(Reλ0 + n− 2)
) ∫

Ω
|u|2dω

+(1− 2ν)

∫

Ω
|p|2dx + (2Reλ0 + n− 2)Re

∫

Ω
purdω = 0. (2.15)

Now we use the original equations to get an expression for the pressure p. It
follows that

r∂rP = x · ∇P = x ·∆U = ∆(x · U)− 2 div U = ∆(rUr) + 2(1− 2ν)P.

Again using (2.12) we obtain that

r∂rP = rλ0−1(λ0 − 1)p(ω),

∆(rUr) = ∆(rλ0+1ur(ω)) = rλ0−1 (∆Sn−1ur(ω) + (λ0 + 1)(λ0 + n− 1)ur(ω)) .

Hence p(ω) = −(3 − 4ν − λ0)
−1(∆Sn−1ur(ω) + (λ0 + 1)(λ0 + n − 1)ur(ω)).

Consequently,

Re

∫

Ω
pur dω = Re (3−4ν−λ0)

−1

∫

Ω
|∇ωur|

2dω−Re
(λ0 + 1)(λ0 + n− 1)

3− 4ν − λ0

∫

Ω
|ur|

2dω.

From this identity and (2.15) after multiplying by |3− 4ν − λ0|
2 we obtain:

0 = |3− 4ν − λ0|
2

[∫

Ω
|∇ωu|

2dω +
(
(Imλ0)

2 −Reλ0(Reλ0 + n− 2)
) ∫

Ω
|u|2dω

]

+ |3− 4ν − λ0|
2(1− 2ν)

∫

Ω
|p|2dx

+ (2Reλ0 + n− 2)(3 − 4ν −Reλ0)

∫

Ω
|∇ωur|

2dω (2.16)

− (2Reλ0 + n− 2)Re
[
(λ0 + 1)(λ0 + n− 1)(3− 4ν − λ0)

] ∫

Ω
|ur|

2dω.
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Now we use the fact that M(M +n−2) is the first eigenvalue of the Dirichlet
problem for Laplacian on Ω. Hence the inequality

M(M + n− 2)

∫

Ω
|u|2dω ≤

∫

Ω
|∇ωu|

2dω

holds. Also

Re
[
(λ0 + 1)(λ0 + n− 1)(3 − 4ν − λ0)

]

= (Reλ0 + 1)(Reλ0 + n− 1)(3 − 4ν −Reλ0)− |Imλ0|
2(Reλ0 + n+ 3− 4ν)

≤ (Reλ0 + 1)(Reλ0 + n− 1)(3 − 4ν −Reλ0).

Using these two inequalities and the fact that 2Reλ0 + n− 2 ≥ 0 we get that

|3− 4ν − λ0|
2 [M(M + n− 2)−Reλ0(Reλ0 + n− 2)]

∫

Ω
|u|2dω

+ |3− 4ν − λ0|
2(1− 2ν)

∫

Ω
|p|2dx

+ (2Reλ0 + n− 2)(3− 4ν −Reλ0)

∫

Ω
|∇ωur|

2dω (2.17)

≤ (2Reλ0 + n− 2)(Reλ0 + 1)(Reλ0 + n− 1)(3 − 4ν −Reλ0)

∫

Ω
|ur|

2dω.

We obtain further simplification by using the inequality |3 − 4ν − λ0|
2 ≥ (3 −

4ν −Reλ0)
2. This gives us

(3− 4ν −Reλ0)(M −Reλ0)(M +Reλ0 + n− 2)

∫

Ω
|u|2dω

+ (3− 4ν −Reλ0)(1 − 2ν)

∫

Ω
|p|2dx

+ (2Reλ0 + n− 2)

∫

Ω
|∇ωur|

2dω (2.18)

≤ (2Reλ0 + n− 2)(Reλ0 + 1)(Reλ0 + n− 1)

∫

Ω
|ur|

2dω.

We write |u|2 = |ur|
2 + |uω|

2. This gives

(3− 4ν −Reλ0)(M −Reλ0)(M +Reλ0 + n− 2)

∫

Ω
|uω|

2dω

+ (3− 4ν −Reλ0)(1 − 2ν)

∫

Ω
|p|2dx

+ (2Reλ0 + n− 2)

∫

Ω
|∇ωur|

2dω ≤ φ(Reλ0)

∫

Ω
|ur|

2dω, (2.19)

where φ is defined by (2.10).
Using the equation div U + (1 − 2ν)P = 0 we get that ∇ω · uω + (λ0 + n −

1)ur + (1− 2ν)p = 0. Integrating this over Ω we conclude that

∫

Ω

(
ur +

1− 2ν

λ0 + n− 1
p

)
dω = 0. (2.20)
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Consider therefore the following minimization problem for the functional
∫

Ω
|∇ωv|

2 dω +
(3− 4ν −Reλ0)(1 − 2ν)

2Reλ0 + n− 2

∫

Ω
|q|2dω (2.21)

for pairs of functions (v, q) ∈ W 1,0
2 (Ω)× L2(Ω) such that

∫

Ω

(
v +

1− 2ν

λ0 + n− 1
q

)
dω = 0 and ‖v‖L2(Ω) = 1. (2.22)

Let us denote by Θ(Ω, λ) that minimum of this functional and let (v0, q0) be
a pair of functions realizing this minimum. We choose q1 to be arbitrary L2(Ω)
function orthogonal to 1. Then the pair (v0, q0 + αq1) for any α ∈ R satisfies
(2.22). Inserting this pair into (2.21) we obtain

Re

∫

Ω
q0 · q1 dω = 0.

Consequently q0 is a constant and we can restrict ourselves to constant q in the
above formulated variational problem. From this

Θ(Ω, λ) = inf

{∫

Ω
|∇ωv|

2 dω +
(3− 4ν −Reλ0)|λ0 + n− 1|2

(1− 2ν)(2Reλ0 + n− 2)|Ω|

∣∣∣∣
∫

Ω
v dω

∣∣∣∣
2
}
,

(2.23)

where the infimum is taken over all W 1,0
2 (Ω) functions v with L2(Ω) norm 1.

When ν = 1/2 this minimization problem takes slightly different form and
simplifies to

Θ(Ω) = inf

{∫

Ω
|∇ωv|

2 dω :

∫

Ω
v dω = 0, v

∣∣
∂Ω

= 0 and ‖v‖L2(Ω) = 1

}
. (2.24)

Note that is this case the minimization problem is independent of λ.
Considering Re λ0 ∈

(
−n−2

2 , 3 − 4ν
]
we see the number

C =
(3− 4ν −Reλ0)|λ0 + n− 1|2

(1− 2ν)(2Reλ0 + n− 2)|Ω|
> 0.

Writing v for the problem (2.23) in the form v = c0 + v1, where c0 is a constant
function and v1 has average 0 over Ω we see that

∫

Ω
|∇ωv|

2 dω + C

∣∣∣∣
∫

Ω
v dω

∣∣∣∣
2

=

∫

Ω
|∇ωv1|

2 dω + C|Ω|2c20.

Using (2.24) the integral
∫
Ω |∇ωv1|

2 dω can be further estimated from below by
Θ(Ω)‖v1‖

2
L2(Ω) = Θ(Ω)(1− ‖c0‖

2
L2(Ω)).

Hence

Θ(Ω, λ) = inf{Θ(Ω)(1 − ‖c0‖
2
L2(Ω)) + C|Ω|2c20; c0 ∈ C and ‖c0‖

2
L2(Ω) ≤ 1}.

It follows that the infimum will be attained either when c0 = 0 or ‖c0‖L2(Ω) = 1.
Hence

Θ(Ω, λ) = min{Θ(Ω), C|Ω|},
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or

Θ(Ω, λ) = min

{
Θ(Ω),

(3− 4ν −Reλ0)|λ0 + n− 1|2

(1− 2ν)(2Reλ0 + n− 2)

}
. (2.25)

Looking at (2.24) we can see that the function Ω 7→ Θ(Ω) does not increase
as Ω increases. It follows that Θ(Ω) ≥ Θ(Sn−1). This minimum for the n − 1
dimensional sphere Sn−1 is known explicitly and equals to n−1. This and (2.25)
implies that for Re λ ≤ 1 we have that Θ(Ω, λ) ≥ n− 1.

Using this for v = ur in (2.19) we see that

(3− 4ν −Reλ0)(M −Reλ0)(M +Reλ0 + n− 2)

∫

Ω
|uω|

2dω

≤ [φ(Reλ0)− (n − 1)(2Reλ0 + n− 2)]

∫

Ω
|ur|

2dω. (2.26)

It follows that for all −(n− 2)/2 < Reλ0 < t(M) the term on the righthand
side of the inequality (2.26) is not positive, but the term on the lefthand side is
nonnegative. Hence both terms have to vanish, i.e., ur = uω = 0 or u is constant.
Given that u vanishes on ∂Ω we get that U(x) = rλ0u(ω) = 0 everywhere. This
establishes the claim.

Theorem 2.2 Consider any (energy) solution of the system (1.1) in K∩B(0, 1)
such that

u
∣∣
∂K∩B(0,1)

= 0, u
∣∣
∂B(0,1)∩K

∈ C(Ω).

Then

u ∈ Cα(K ∩B(0, 1/2)), and |∇u(x)| ≤ C|x|α−1‖u‖
C(∂B(0,1)∩K)

, (2.27)

for all |x| ≤ 1/2 and some α > 0, C > 0 independent of u.
Similarly, if u is an (energy) solution of the system (1.1) in K \B(0, 1) such

that
u
∣∣
∂K\B(0,1)

= 0, u
∣∣
∂B(0,1)∩K

∈ C(Ω).

Then

|u(x)| ≤ C|x|2−n−α‖u‖C(∂B(0,1)∩K), |∇u(x)| ≤ C|x|1−n−α‖u‖C(∂B(0,1)∩K),

(2.28)

for all |x| ≥ 2 and some α > 0, C > 0 independent of u.

Proof. This is a consequence of Theorem 2.1. Indeed, we first look for solutions
of (1.1) in the separated form U(x) = rλu(ω), P (x) = rλ−1p(ω). Choose, any
α ∈ (0,min{1, t(M)}). Then by Theorem 2.1, Re λ > α and any (energy) solution
of the system (1.1) on K ∩ B(0, 1) has the following asymptotic representation
by the Kondrat’ev’s theorem [7]:

u(r, ω) = rλ0

m∑

i=1

ki∑

j=0

cij
1

j!
(log r)juij(ω)+O(rRe λ0−ε), for all ε > 0. (2.29)
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Here ui0(ω) are the eigenfunctions of the pencil L(λ0) corresponding to an eigen-
value λ0 with the smallest real part (m is the multiplicity of this eigenvalue)
and ui1(ω), u

i
2(ω), . . . , u

i
ki
(ω) are the generalized eigenfunctions (a Jordan chain).

Given our assumption that ∂Ω is smooth, these are C∞ vector-valued functions.
Similarly, in the second case working on K \B(0, 1) we have

u(r, ω) = r2−n−λ0

m∑

i=1

ki∑

j=0

cij
1

j!
(log r)juij(ω) +O(r2−n−Re λ0+ε), (2.30)

for all ε > 0. Hence (2.27) holds as can be seen from (2.29) and (2.28) holds by
(2.30).

3 Estimates for Green’s function

We shall consider estimates for the Green’s function for the Lamé and Stokes
systems on a cone K in a spirit of the three dimensional result of Maz’ya and
Plamenevskii [10] and Theorem 11.4.7 of [13].

Let D ⊂ R
n be a bounded domain that is smooth everywhere except at a

single point (without loss of generality we can assume this point is 0). In a small
neighborhood of this point we will assume the domain looks like a cone K defined
above. That is for some δ > 0

D ∩B(0, δ) = K ∩B(0, δ), (3.31)

where K = {x ∈ R
n; 0 < |x| < ∞, x/|x| ∈ Ω}. Recall that Ω ⊂ S

n−1. We will
assume that Ω is open and nonempty.

Let us denote the vector δj with components (δ1j , δ2j , . . . , δnj) where δij de-
notes the Kronecker symbol. Consider the fundamental solution (gj , pj) of our
system in D, that is the solution of the problem

−∆xg
j(x, ξ) +∇xp

j(x, ξ) = δ(x− ξ)δj ,

divxg
j(x, ξ) + (1− 2ν)pj(x, ξ) = 0, x, ξ ∈ D. (3.32)

We claim that the following holds:

|∇ξg
j(x, ξ)| ≤ c|x− ξ|−(n−1), if |x| < |ξ| < 2|x|,

|∇ξg
j(x, ξ)| ≤ c|x|α|ξ|−(α+n−1), if 2|x| < |ξ|, (3.33)

|∇ξg
j(x, ξ)| ≤ c|ξ|α−1|x|−(α+n−2), if 2|ξ| < |x|.

Here α > 0 is a small constant as in Theorem 2.2.

We claim it suffices to establish estimates (3.33) for the fundamental solution
in the unbounded cone K with zero Dirichlet boundary conditions at ∂K and
infinity. Here the fundamental solution in the unbounded cone K is a solution of
(3.33) in K that decays at infinity, i.e., gj(x, ξ) → 0 as |x| → ∞ sufficiently fast
so that gj(., ξ) is an L2 function outside the pole at x = ξ.

11



We will explain the step of going from K to D in detail below. Let us now
work on K. The existence and uniqueness of Green’s function in an infinite cone
for general elliptic boundary value problems was established in Theorem 7.2 of
[8], in particular the first estimate (3.33) follows directly from this Theorem.

We now look at the last estimate in (3.33). Given the homogeneity of gj on
K we have

gj(x, ξ) = λn−2gj(λx, λξ), for all λ > 0.

It follows that
gj(x, ξ) = |x|2−ngj(x/|x|, ξ/|x|).

Fix now x ∈ K. On domain |ξ| ≤ 0.99999|x|, ξ 7→ gj(x, ξ) is just the solution
of the adjoint problem to (1.1) - so all we proved for (1.1) also holds for the
adjoint equation. In particular (2.27) applies and

|∇ξg
j(x, ξ)| = |x|2−n|∇ξg

j(x/|x|, ξ/|x|)| ≤ C|x|2−n

∣∣∣∣
ξ

x

∣∣∣∣
α−1 1

|x|

= C|ξ|α−1|x|−(α+n−2), for |ξ| < 3/4|x|. (3.34)

The second estimate is similar, but we use (2.28). Again we have

gj(x, ξ) = |x|2−ngj(x/|x|, ξ/|x|),

for on domain domain |ξ| > 1.00001|x|. As before ξ 7→ gj(x, ξ) solves an adjoint
problem, so by (2.28) we get for |ξ| > 4/3|x|:

|∇ξg
j(x, ξ)| = |x|2−n|∇ξg

j(x/|x|, ξ/|x|)| ≤ C|x|2−n

∣∣∣∣
ξ

|x|

∣∣∣∣
1−n−α 1

|x|

= C|x|α|ξ|−(α+n−1). (3.35)

Having required estimates on ∂K we show now that the same will be true
on the domain D defined at the beginning of this section. The point is that by
(3.31) the domains D and K coincide. Hence, if we denote the Green’s function

on K by g̃j , then the Greens’s function gj for D can be sought in the form

gj(x, ξ) = g̃j(x, ξ)ϕ(x) + fj(x, ξ),

where ϕ(x) is a smooth cut-off function equal to one on B(0, δ/2) and vanishing
outside B(0, δ).

Since

−∆x[g
j(x, ξ)ϕ(x)] +∇xp

j(x, ξ) = δ(x− ξ)δj + ρ(x, ξ),

divx[g
j(x, ξ)ϕ(x)] + (1− 2ν)pj(x, ξ) = τ(x, ξ), x, ξ ∈ D, (3.36)

where ρ and τ are are only supported in D ∩ {δ/2 < |x| < δ}, we see that fj
must solve

−∆xfj(x, ξ) +∇xp
j(x, ξ) = −ρ(x, ξ),

divxfj(x, ξ) + (1 − 2ν)pj(x, ξ) = −τ(x, ξ), x, ξ ∈ D, (3.37)

and fj
∣∣
∂D

= 0. The main point is that this reduces the problem to dealing
with the remainder term fj. Now however, near the singular vertex Theorem 2.2
applies and away from the vertex the domain ∂D is smooth, hence fj is smooth
there as well, so fj has the required regularity. See also section 4 of [12] for
estimates of this type.
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4 The Lp Dirichlet problem

Let D be the domain defined in the previous section. We would like to study the
solvability of the classical Lp Dirichlet problem for the Lamé and Stokes systems
in the domain D. Let us recall the definition.

Definition 4.1 Let 1 < p ≤ ∞. We say that the Dirichlet problem for the Lamé
system (ν < 1/2) or Stokes system (ν = 1/2) is Lp solvable on the domain D if
for all vector fields f ∈ Lp(∂D) there is pair (u, p) such that

−∆u+∇p = 0, div u+ (1− 2ν)p = 0 in D (4.38)

u
∣∣
∂D

= f almost everywhere,

u∗ ∈ Lp(∂D),

and for some C > 0 independent of f

‖u∗‖Lp(∂D) ≤ C‖f‖Lp(∂D).

Here, the boundary values of u are understood in the nontangential sense,
that is we take the limit

u
∣∣
∂D

(x) = lim
y→x, y∈Γ(x)

u(y),

over a collection of nontangential cones Γ(x) of same aperture and vertex at
x ∈ ∂D and u∗ is the classical nontangential maximal function defined as

u∗(x) = sup
y∈Γ(x)

|u(y)|, for all x ∈ ∂D.

Our main result is

Theorem 4.1 Let D be the domain defined above and ν ≤ 1/2. Then for any
(n− 1)/(α + n− 2) < p ≤ ∞ (α is same as in (3.33)) the Lp Dirichlet problem
for the system (4.38) is uniquely solvable. Moreover, for any such p there exists
a constant C(p) > 0 such that the solution (u, p) of the problem with boundary
data f ∈ Lp satisfies the estimate

‖u∗‖Lp(∂D) ≤ C(p)‖f‖Lp(∂D).

Moreover, if f ∈ C(∂D), then u ∈ C(Ω) and an estimate

‖u‖C(D) ≤ C‖f‖C(∂D)

holds.

Proof: Consider the representation of the solution u by the Green’s formula.
That is, for j = 1, 2, . . . , n

uj(x) = −

∫

∂D

∂gj(x, ξ)

∂νξ
f(ξ)dσξ, x ∈ D, (4.39)
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where νξ is the outer normal at the boundary point ξ and dσ is the (n − 1)-
dimensional area element at ∂D. We will use (3.33) to establish the claim. From
this estimate we obtain in the zone |x|/2 < |ξ| < 2|x|

∣∣∣∣
∂gj(x, ξ)

∂νξ

∣∣∣∣ ≤ C
R(x)

|x− ξ|n
,

whereR(x) = dist(x, ∂D). From this and other two estimates of (3.33) we obtain:

|uj(x)| ≤ C

(
|x|α

∫

E1

|f(ξ)|

|ξ|n−1+α
dσ +R(x)

∫

E2

|f(ξ)|

|x− ξ|n
dσ

+
1

|x|n−2+α

∫

E3

|f(ξ)|

|ξ|1−α
dσ

)
. (4.40)

Let us denote these three integrals by v1(x), v2(x), v3(x), respectively. Here

E1 = {ξ ∈ ∂D : 2|x| < |ξ|},

E2 = {ξ ∈ ∂D : |x|/2 ≤ |ξ| ≤ 2|x|} (4.41)

E3 = {ξ ∈ ∂D : 2|ξ| < |x|}.

We deal with these three terms separately. We introduce

vi,∗(x) = sup
y∈Γ(x)

|vi(y)|, for all x ∈ ∂D and i = 1, 2, 3.

It follows that

u∗(x) ≤ C(v1,∗(x) + v2,∗(x) + v3,∗(x)) for all x ∈ ∂D.

Lemma 4.2 There exists C > 0 such that

‖v1,∗‖L∞(∂D) = ‖v1‖L∞(D) ≤ C‖f‖L∞(∂D) (4.42)

‖v1,∗‖L1,w(∂D) ≤ C‖f‖L1(∂D).

Here Lp,w is the weak-Lp space equipped with the norm

‖f‖Lp,w =

(
sup
λ>0

λpσ({ξ : |f(ξ)| > λ})

)1/p

.

Proof of the lemma: The definition of v1 implies that

v1(x) ≤ |x|α
∫

E1

|f(ξ)|

|ξ|n−1+α
dσ

≤ |x|α‖f‖∞

∫

|ξ|>2|x|
|ξ|−(n−1+α)dσ ≤ C‖f‖∞, (4.43)

since the integral is bounded by C|x|−α. From this the first claim follows. On the
other hand, when f ∈ L1 we use a trivial estimate |ξ|−(n−1+α) ≤ C|x|−(n−1+α)

which gives us

v1(x) = |x|α
∫

E1

|f(ξ)|

|ξ|n−1+α
dσ ≤ C|x|−(n−1)

∫

E1

|f(ξ)|σ ≤ C‖f‖1|x|
−(n−1). (4.44)
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From this we can estimate v1,∗(ξ) for ξ ∈ ∂D. We realize that for any x ∈ Γ(ξ)
we have |x| ≥ |ξ|, hence

v1,∗(ξ) ≤ C‖f‖1|ξ|
−(n−1).

It follows that

σ({ξ : v1,∗(ξ) > λ}) ≤ σ({ξ : C‖f‖L1 |ξ|−(n−1) > λ}) (4.45)

= σ

({
ξ : |ξ|n−1 <

C‖f‖L1

λ

})
≤ C

‖f‖L1

λ
,

since the surface measure of a ball {ξ : |ξ| ≤ R} is proportional to Rn−1. From
this the fact that v1,∗ belongs to the weak-L1 follows.

Lemma 4.3 There exist C(p) > 0 such that for all p > n−1
n−2+α

‖v3,∗‖L∞(∂D) = ‖v3‖L∞(D) ≤ C‖f‖L∞(∂D) (4.46)

‖v3,∗‖Lp,w(∂D) ≤ C‖f‖Lp(∂D).

Proof of the lemma: The definition of v3 implies that for q = p/(p− 1)

v3(x) = |x|−(n−2+α)

∫

E3

|f(ξ)|

|ξ|1−α
dσ

≤ C|x|−(n−2+α)‖f‖Lp(E3)

(∫

E3

1

|ξ|q(1−α)
dσ

)1/q

. (4.47)

In polar coordinates

∫

E3

1

|ξ|q(1−α)
dσ ≈

∫ |x|/2

0
rn−2−q(1−α)dr < ∞ (4.48)

if and only if n − 2 − q(1 − α) > −1 or p > n−1
n−2+α . Assuming that (4.47) gives

us that

v3(x) ≤ C|x|−(n−2+α)‖f‖Lp(E3)

(
|x|n−1−q(1−α)

)1/q
≤ C‖f‖Lp(∂D)|x|

−n−1

p . (4.49)

When p = ∞ the first part of (4.46) follows. For n−1
n−2+α < p < ∞ we observe

that as before

v3,∗(ξ) = sup
x∈Γ(ξ)

v3(x) ≤ C‖f‖Lp(∂D)|ξ|
−n−1

p .

Hence

σ({ξ : v3,∗(ξ) > λ}) ≤ σ({ξ : C‖f‖Lp |ξ|−(n−1)/p > λ}) (4.50)

= σ

({
ξ : |ξ|n−1 <

C‖f‖pLp

λp

})
≤ C

‖f‖pLp

λp
.

This gives the second estimate of (4.46).
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Lemma 4.4 There exist C > 0 such that

‖v2,∗‖L∞(∂D) = ‖v2‖L∞(D) ≤ C‖f‖L∞(∂D). (4.51)

Proof of the lemma: For any x ∈ D:

v2(x) = R(x)

∫

E2

|f(ξ)|

|x− ξ|n
dσ ≤ ‖f‖L∞(D)R(x)

∫

E2

|x− ξ|−ndσ. (4.52)

We need to consider how the set E2 looks. Clearly for every x ∈ E2, |x − ξ| ≥
R(x). Since E2 = {ξ ∈ ∂D : |ξ| ∈ [|x|/2, 2|x|]} we can parameterize E2 and
think about it as a cylinder B × [0, A], where B is an n − 2-dimensional set of
diameter at most 2|x|. In this parametrization for ξ = (b, s) ∈ B× [0, A] we have
|x− ξ| ≈ R(x) + s. It follows that

R(x)

∫

E2

|x− ξ|−ndσ ≈ R(x)

∫ A

0

R(x)n−2

(R(x) + s)n
ds (4.53)

≤ R(x)n−1

∫ ∞

R(x)
s−nds ≤ C.

Hence that
v2(x) ≤ C‖f‖L∞(D),

with constant C > 0 independent of the point x ∈ D.

To handle p < ∞ we need to introduce further splitting. Recall that v2,∗(x)
for a boundary point x ∈ ∂D is defined as a supremum of v2 over a nontangential
cone Γ(x) with vertex at x. The points y ∈ Γ(x) are of two kinds. The first kind
are points for which |y − x| ≤ |x| (these are near the vertex x). The second
kind are points |y − x| > |x|, for these we can make a simple observation that
R(y) ≈ |y − x| ≈ |y|. To distinguish these two we introduce

w(x) = sup{v2(y) : y ∈ Γ(x) and |y − x| ≤ |x|}, (4.54)

z(x) = sup{v2(y) : y ∈ Γ(x) and |y − x| > |x|}.

It follows that pointwise v2,∗(x) ≤ w(x) + z(x) for x ∈ ∂D and hence

‖v2,∗‖Lp(∂D) ≤ ‖w‖Lp(∂D) + ‖z‖Lp(∂D), for any 1 ≤ p ≤ ∞.

Let us denote by Ba,b the part of the boundary of ∂D such that

Ba,b = {ξ ∈ ∂D; a ≤ |ξ| ≤ b} for 0 < a < b. (4.55)

Due to our assumption that near 0 our domain looks like a cone, it follows that
for a, b, λb < δ the sets Ba,b and Bλa,λb (λ > 0) are simple rescales of each other,
that is

Bλa,λb = λBa,b, (4.56)

where the multiplication of a set by a scalar is understood in the usual sense.
We claim that for any λ > 0 and 1 < p ≤ ∞ we have an estimate

‖w‖Lp(Bλ,2λ) ≤ Cp‖f‖Lp(Bλ/2,8λ). (4.57)
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It is enough to establish this for a single value of λ > 0, since then due to the
rescaling argument the statement must be true for all λ > 0 small as follows from
(4.56). The (4.57) holds, since the Dirichlet problem for the Lamé (or Stokes)
system is solvable for all 1 < p ≤ ∞, provided the domain is C1. As the sets
Bλ,2λ and Bλ/2,8λ are outside the singularity (vertex at 0), our domain can be
modified near the vertex outside these sets, so that the whole domain is C1.
Then the solvability for all p > 1 is used to get (4.57).

Setting λ = 2−nδ and summing over n we get:

‖w‖pLp(∂D∩B(0,δ/8)) =

∞∑

n=8

‖w‖pLp(B
2−n−1δ,2−nδ)

(4.58)

≤ Cp
p

∞∑

n=8

‖f‖pLp(B
2−n−2δ,2−n+3δ)

≤ 4Cp
p‖f‖

p
Lp(∂D∩B(0,δ)).

This is the necessary estimate for w.
Looking at z, let us pick a point y ∈ Γ(x) for x ∈ ∂D such that |y− x| > |x|.

We need to estimate v2(y):

v2(y) = R(y)

∫

E2

|f(ξ)|

|y − ξ|n
dσ.

Clearly, due to the fact that R(y) ≈ |y| and since for ξ ∈ E2: |ξ| ≈ |y| we see
that for any ξ ∈ E2 we have |y − ξ| ≈ |y|. Hence

v2(y) ≤ C|y|1−n

∫

E2

|f(ξ)|dσ ≤ C|y|1−n‖f‖L1(∂D).

It follows that for x ∈ ∂D:

z(x) = sup{v2(y) : y ∈ Γ(x) and |y − x| > |x|} ≤ C|x|1−n‖f‖L1(∂D). (4.59)

By the same argument as in (4.45) it follows that z belongs to a weak L1,w(∂D).
Hence we can claim that

Lemma 4.5 For any 1 < p ≤ ∞ there exists Cp > 0 such that

‖v2,∗‖Lp(∂D) ≤ Cp‖f‖Lp(∂D). (4.60)

Proof. Consider first a mapping f 7→ zf , where for given f , we define z = zf by
(4.59). This is not a linear mapping, but it is sublinear, that is

zf+g ≤ zf + zg.

By Lemma 4.4 this mapping is bounded on L∞ and also as we have just show
maps L1 to weak L1,w. By the Marcinkiewicz interpolation theorem (which only
requires sublinearity, not linearity) this mapping is therefore bounded on any Lp,
p > 1, and we have the estimate:

‖zf‖Lp ≤ Cp‖f‖Lp .
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As we already know this for w we see that

‖v2,∗‖Lp ≤ ‖w‖Lp + ‖z‖Lp ≤ Cp‖f‖Lp ,

for all p > 1.

Proof of Theorem 4.1. We use the Marcinkiewicz interpolation theorem in the
same spirit as we did above. By Lemmas 4.2 and 4.3 it follows that for all p > 1:

‖v1,∗‖Lp ≤ Cp‖f‖Lp ,

and for all p > n−1
n−2+α :

‖v3,∗‖Lp ≤ Cp‖f‖Lp .

Combining the estimates for v1,∗, v2,∗ and v3,∗ yields the desired claim, since

‖u∗‖Lp ≤ C(‖v1,∗‖Lp + ‖v2,∗‖Lp + ‖v3,∗‖Lp).
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