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Abstract

The aim of this paper is to extend the approximate quasi-interpolation on a uniform grid by dilated
shifts of a smooth and rapidly decaying function to scattered data quasi-interpolation. It is shown that high
order approximation of smooth functions up to some prescribed accuracy is possible, if the basis functions,
which are centered at the scattered nodes, are multiplied by suitable polynomials such that their sum is an
approximate partition of unity. For Gaussian functions we propose a method to construct the approximate
partition of unity and describe an application of the new quasi-interpolation approach to the cubature of
multi-dimensional integral operators.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The approximation of multivariate functions from scattered data is an important theme in
numerical mathematics. One of the methods to attack this problem is quasi-interpolation. One
takes values u(xj ) of a function u on a set of nodes {xj }j∈J and constructs an approximant of u

∗ Corresponding author.
E-mail addresses: lanzara@mat.uniroma1.it (F. Lanzara), vlmaz@mai.liu.se (V. Maz’ya), schmidt@wias-berlin.de

(G. Schmidt).

0021-9045/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2006.08.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82137309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jat
mailto:lanzara@mat.uniroma1.it
mailto:vlmaz@mai.liu.se
mailto:schmidt@wias-berlin.de


142 F. Lanzara et al. / Journal of Approximation Theory 145 (2007) 141–170

by linear combinations∑
j∈J

u(xj )�j (x),

where �j (x) is a set of basis functions. Using quasi-interpolation there is no need to solve large
algebraic systems. The approximation properties of quasi-interpolants in the case that xj are the
nodes of a uniform grid are well-understood. For example, the quasi-interpolant∑

j∈Zn

u(hj)�
(

x − hj
h

)
(1.1)

can be studied via the theory of principal shift-invariant spaces, which has been developed in
several articles by de Boor et al. (see e.g. [3,4]). Here � is supposed to be a compactly supported
or rapidly decaying function. Based on the Strang-Fix condition for �, which is equivalent to poly-
nomial reproduction, convergence and approximation orders for several classes of basis functions
were obtained (see also [22], [8]). Scattered data quasi-interpolation by functions, which repro-
duce polynomials, has been studied by Buhmann et al. [2] and Dyn and Ron [5] (see also [26] for
further references). Other methods for scattered data approximation include moving least squares
(see [6,10]), which among others have attracted attention in the context of approximate solutions
of partial differential equations as so-called meshless methods (see [1] and the references therein).
As a rule, the methods reproduce polynomials, at least locally, but the shape functions �j are not
available analytically in simple forms. The computation of the approximant requires solving a
linear algebraic system for each point x ∈ Rn.

In order to extend the quasi-interpolation (1.1) to general classes of approximating functions
with good analytical properties, another concept of approximation procedures, called approximate
approximations, was proposed in [11,12]. These procedures have the common feature, that they
are accurate without being convergent in a rigorous sense. Consider, for example, the quasi-
interpolant on the uniform grid

M u(x) = D−n/2
∑
j∈Zn

u(hj) �

(
x − hj

h
√

D

)
, (1.2)

where � is sufficiently smooth and of rapid decay, h and D are two positive parameters. It was
shown that if F� − 1 has a zero of order N at the origin (F� denotes the Fourier transform of �),
then M u approximates u pointwise

|Mu(x) − u(x)|�cN,� (h
√

D)N‖∇Nu‖L∞(Rn) + ε |∇N−1u(x)|, (1.3)

with a constant cN,� not depending on u, h, and D, and the positive number ε can be made
arbitrarily small if D is sufficiently large (see [14,15]). In general, there is no convergence of
the approximate quasi-interpolant Mu(x) to u(x) as h → 0. However, one can fix D such that
up to any prescribed accuracy Mu approximates u with order O(hN). The lack of convergence
as h → 0, which is not perceptible in numerical computations for appropriately chosen D, is
compensated by a greater flexibility in the choice of approximating functions �. In applications,
this flexibility enables one to obtain simple and accurate formulae for values of various integral
and pseudo-differential operators of mathematical physics (see [14,16,18] and the review paper
[23]) and to develop explicit semi-analytic time-marching algorithms for initial boundary value
problems for linear and non linear evolution equations [13,9].
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Up to now the approximate quasi-interpolation approach was extended to nonuniform grids in
two directions. The case that the set of nodes is a smooth image of a uniform grid was studied in
[17]. It was shown that formulae similar to (1.2) preserve the basic properties of approximate quasi-
interpolation. A similar result for quasi-interpolation on piecewise uniform grids was obtained
in [7]. It is the purpose of the present paper to generalize the method of approximate quasi-
interpolation to functions with values given on a rather general grid {xj }j∈J by modifying the
approximating functions. More precisely, we consider approximations of the form

Mu(x) =
∑
j∈J

∑
xk∈st(xj )

u(xk) Pj,k(x) �

(
x − xj

hj

)
, (1.4)

where st(xj ) is some finite set of nodes near xj (see Definition 3.1). The functions Pj,k are
polynomials and hj are scaling parameters. We show that one can achieve the approximation of
u with arbitrary order N up to a small saturation error, as long as an “approximate partition of

unity”

{
P̃j (x)�

(
x − xj

hj

)}
with other polynomials P̃j exists. Here we mean that for any ε > 0

one can find polynomials such that

sup
Rn

∣∣∣∣∣∣
∑
j∈J

P̃j (x)�

(
x − xj

hj

)
− 1

∣∣∣∣∣∣ < ε. (1.5)

Then one can choose the polynomials Pj,k in (1.4) such that pointwise

|Mu(x) − u(x)|�C sup
j

hN
j ‖∇Nu‖L∞ + ε |u(x)|.

This estimate is valid as long as∑
j∈J

�

(
x − xj

hj

)
�c > 0

and � is sufficiently smooth and of rapid decay, but is not subjected to additional requirements as
the Strang-Fix condition. Moreover, for the special case of scattered nodes close to a piecewise
uniform grid we propose a method to construct polynomials Pj such that the sum∑

j∈J

Pj (x) e−|x−xj |2/(h2
j D)

approximates the constant function 1 up to an arbitrary prescribed accuracy. This method does not
require solving a large system of linear equations. Instead, in order to obtain locally an analytic
representation of the partition of unity and consequently of the quasi-interpolant (1.4), one has to
solve a small number of linear systems of moderate size.

We give a simple example of formula (1.4). Let {xj } be a sequence of points on R such that
0 < xj+1 − xj �1. Consider a sequence of functions �j on R supported by a fixed neighborhood
of the origin. Suppose that the sequence {�j (x − xj )} forms an approximate partition of unity
on R, ∣∣∣∣∣∣1 −

∑
j

�j (x − xj )

∣∣∣∣∣∣ < ε.
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One can easily see that the quasi-interpolant

Mhu(x) =
∑
j

u(hxj )

(
xj+1 − x/h

xj+1 − xj

�j

(x

h
− xj

)
+ x/h − xj−1

xj − xj−1
�j−1

(x

h
− xj−1

))

satisfies

|Mhu(x) − u(x)|�c h2 ‖u′′‖L∞(R) + ε |u(x)|,
where the constant c depends on the functions �j .

Note, that by a suitable choice of � it is possible to obtain explicit semi-analytic or other
efficient approximation formulae for multi-dimensional integral and pseudo-differential opera-
tors which are based on the quasi-interpolant (1.4). So the cubature of those integrals, which
is one of the applications of the approximate quasi-interpolation on uniform grids, can be car-
ried over to the case when the integral operators are applied to functions given at scattered
nodes.

The outline of the paper is as follows. In Section 2 we show that, under some mild restric-
tions on the scattered nodes, an approximate partition of unity can be obtained from a given
system of rapidly decaying approximating functions if these functions are multiplied by poly-
nomials. Using the approximate partition of unity, one can construct quasi-interpolants of high
order approximation rate up to some prescribed saturation error. This will be shown in Section 3.
Section 4 contains an application to the cubature of convolution integral operators. A construction
of the approximate partition of unity for the case of Gaussians and some numerical examples are
given in Section 5.

2. Approximate partition of unity

In this section we show that an approximate partition of unity of Rn can be obtained from a
given system of approximating functions centered at scattered nodes {xj }j∈J if these functions
are multiplied by polynomials. Here J denotes an infinite index set. We are mainly interested in
rapidly decaying basis functions which are supported on the whole space. But we start with the
simpler case of compactly supported basis functions.

2.1. Basis functions with compact support

Lemma 2.1. Let {B(xj , hj )}j∈J be an open locally finite covering of Rn by balls centered in xj

and radii hj . Suppose that the multiplicity of this covering does not exceed a positive constant �n

and that there are positive constants c1 and c2 satisfying

c1hm �hj �c2hm (2.1)

provided the balls B(xj , hj ) and B(xm, hm) have common points. Furthermore, let {�j } be a
bounded sequence of continuous functions on Rn such that supp �j ⊂ B(xj , hj ). We assume that
the functions Rn � y → �j (hj y) are uniformly continuous with respect to j and

s(x) :=
∑
j∈J

�j (x)�c on Rn, (2.2)
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where c is a positive constant. Then for any ε > 0 there exists a sequence of polynomials {Pj }
with the following properties:

(i) the function

� :=
∑
j∈J

Pj �j (2.3)

satisfies

|�(x) − 1| < ε for all x ∈ Rn; (2.4)

(ii) the degrees of all Pj are bounded (they depend on the least majorant of the continuity moduli
of �j and the constants ε, c, c1, c2, �n);

(iii) there exists a constant c0 such that |Pj (x)| < c0 for all j and x ∈ B(xj , hj ).

Proof. Since the functions B(xj , 1) � y → s(hj y) are continuous uniformly with respect to j ,
for an arbitrary positive � there exist polynomials Pj subject to∣∣∣∣Pj (x) − 1

s(x)

∣∣∣∣ < � on B(xj , hj ),

and the degree of Pj , deg Pj , is independent of j . Letting � = ε (�n‖�‖L∞)−1 we obtain∣∣∣∣�j (x)

(
Pj (x) − 1

s(x)

)∣∣∣∣ � ε

�n

.

Then

sup
Rn

∑
j∈J

∣∣∣∣�j (x)

(
Pj (x) − 1

s(x)

)∣∣∣∣ �ε, (2.5)

since at most �n terms of this sum are different from zero. But∑
j∈J

�j (x)

(
Pj (x) − 1

s(x)

)
=
∑
j∈J

�j (x)Pj (x) − 1

s(x)

∑
j∈J

�j (x)

=
∑
j∈J

�j (x)Pj (x) − 1,

which proves (2.4). �

Remark 2.2. Let the functions {�j }j∈J in Lemma 2.1 satisfy the additional hypothesis �j ∈
Ck(Rn). Then one can find a sequence of polynomials {Pj } of degrees Lj such that

sup
B(xj ,hj )

∣∣∣∣Pj (x) − 1

s(x)

∣∣∣∣ �C(k)
hk

j

Lk
j

sup
B(xj ,hj )

|∇ks(x)|

(see, e.g., [19]). Here ∇ks denotes the vector of partial derivatives {��
s}|�|=k . The estimate shows

that it suffices to take polynomials Pj with deg Pj > c(k) ε−1/k in order to achieve the error ε

in (2.5).
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2.2. Basis functions with noncompact support

Here we consider approximating functions supported on the whole Rn. We suppose that the
functions {�j }j∈J , are scaled translates

�j (x) = �

(
x − xj

hj

)
of a sufficiently smooth function � with rapid decay.

First we formulate a result on weighted polynomial approximation which follows from
[20, Theorem 4.2]. If we denote by w�,p, � > 1, p > 0, the weight function

w�,p(x) = exp

(
−p

n∑
k=1

|xk|�
)

, (2.6)

then for any g ∈ Wr∞(Rn) there exists a polynomial P of degree at most 2N − 1 in each variable
x1, . . . , xn, such that

‖w�,p(g − P)‖L∞ �c N(1−�)r/�

(
‖w�,pg‖L∞ +

n∑
k=1

‖w�,p�r
kg‖L∞

)
, (2.7)

with a constant c depending only on the weight function.

Lemma 2.3. For given ε > 0 there exist a number Lε and polynomials Pj of degree deg Pj �Lε

such that the function � defined by (2.3) satisfies (2.4) under the following assumptions on �, the
nodes {xj }j∈J and the scaling parameters {hj }:
1. There exists K > 0 such that

cK :=
∥∥∥∑

j∈J

(
1 + h−1

j | · − xj |
)−K ∥∥∥

L∞
< ∞. (2.8)

2. There exist � > 1 and p > 0 such that∥∥∥ (1 + | · |)K
w�,p

�
∥∥∥

L∞
,

∥∥∥ (1 + | · |)K
w�,p

∇�
∥∥∥

L∞
�c�,p < ∞, (2.9)

with the weight function w�,p defined in (2.6).
3. There exists C > 0 such that for all indices j, m ∈ J

hj

hm

w�,p

(
xj − xm

hj + hm

)
�C. (2.10)

4. (2.2) is valid.

Proof. From (2.8) and (2.9) the sum∑
j∈J

�

(
x − xj

hj

)
= s(x)
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converges absolutely for any x to a positive, smooth and bounded function s. Suppose that we
have shown that for any ε > 0 and all indices j there exist polynomials Pj such that∣∣∣∣�(x − xj

hj

)(
Pj

(
x − xj

hj

)
− 1

s(x)

)∣∣∣∣ � ε

cK

(
1 + |x − xj |

hj

)−K

, (2.11)

(cK is defined in (2.8)) and deg Pj �Lε. Then

sup
Rn

∑
j∈J

∣∣∣∣�(x − xj

hj

)(
Pj

(
x − xj

hj

)
− 1

s(x)

)∣∣∣∣ �ε,

and as in the proof of Lemma 2.1 we conclude

sup
Rn

∣∣∣∣∣∣
∑
j∈J

�

(
x − xj

hj

)
Pj

(
x − xj

hj

)
− 1

∣∣∣∣∣∣ �ε.

Let us fix an index j and make the change of variables y = hj
−1(x − xj ). Then (2.11) is proved

if we show that there exists a polynomial Pj such that for all y ∈ Rn∣∣∣∣�(y)

(
Pj (y) − 1

s̃(y)

)∣∣∣∣ � ε

cK

(1 + |y|)−K , (2.12)

with s̃(y) = s(hj y + xj ). Since s̃−1 ∈ W 1∞(Rn) according to the estimate (2.7) we can find a
polynomial Pj satisfying

sup
Rn

∣∣∣∣Pj (y) − 1

s̃(y)

∣∣∣∣w�,p(y) <
ε

c�,p cK

,

with the constant c�,p in the decay condition (2.9). Now (2.12) follows immediately from

|�(y)|(1 + |y|)K �c�,p w�,p(y).

By (2.7), the degree of the polynomial Pj depends on the weighted norm

sup
Rn

w�,p(y)

∣∣∣∣∇ 1

s̃(y)

∣∣∣∣ = hj sup
Rn

w�,p

(
x − xj

hj

) ∣∣∣∣∇ 1

s(x)

∣∣∣∣
� sup

Rn

1

(s(x))2 w�,p

(
x − xj

hj

)∑
m∈J

hj

hm

∣∣∣∣∇�

(
x − xm

hm

)∣∣∣∣ . (2.13)

Since by (2.9)∣∣∣∣∇�

(
x − xm

hm

)∣∣∣∣ �c�,p w�,p

(
x − xm

hm

)(
1 + |x − xm|

hm

)−K

,

a uniform bound of (2.13) with respect to j can be established if the sums

∑
m∈J

hj

hm

w�,p

(
x − xj

hj

)
w�,p

(
x − xm

hm

)(
1 + |x − xm|

hm

)−K
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are uniformly bounded for all j . In view of∣∣∣∣x − a

�

∣∣∣∣� +
∣∣∣∣x − b

�

∣∣∣∣� � |a − b|�
(��/(�−1) + ��/(�−1))�−1

�
∣∣∣∣a − b

� + �

∣∣∣∣�
for any x ∈ R and � > 1 we obtain the inequality

w�,p

(
x − xj

hj

)
w�,p

(
x − xm

hm

)
�w�,p

(
xj − xm

hj + hm

)
.

Therefore, the condition (2.10) on the nodes {xj } and the corresponding parameters {hj } guaran-
tees that the degree of the polynomials Pj can be chosen not depending on j . �

3. Quasi-interpolants of a general form

In this section we study the approximation of sufficiently smooth functions by the quasi-
interpolant (1.4). For simplicity we consider functions u of the class WN∞(Rn) which have con-
tinuous bounded partial derivatives

��
u = ��

u

�	1
1 · · · �	n

n

, |�| = 	1 + · · · + 	n,

up to the order |�| < N and ��
u ∈ L∞(Rn) if |�| = N . We will show that within the class

of generating functions of the form polynomial times compactly supported or rapidly decay-
ing generating function it suffices to have an approximate partition of unity in order to con-
struct approximate quasi-interpolants of high order accuracy up to some prescribed saturation
error.

Definition 3.1. Let xj ∈ X. A collection of mN = (N − 1 + n)!
n!(N − 1)! −1 nodes xk ∈ X will be called

star of xj and denoted by st(xj ) if the Vandermonde matrix{
(xk − xj )

�
}
, |�| = 1, . . . , N − 1, xk ∈ st(xj ), (3.1)

is not singular. The union of the node xj and its star st(xj ) is denoted by st(xj ) = xj ∪ st(xj ).

Let us assume the following hypothesis concerning the grid {xj }j∈J :

Condition 3.1. For any xj there exists a ball B(xj , hj ) which contains mN nodes xk ∈ st(xj )

with

| det Vj,hj
| =

∣∣∣∣∣det

{(
xk − xj

hj

)�}N−1

|�|=1,xk∈st(xj )

∣∣∣∣∣ �c, (3.2)

with c > 0 not depending on xj .

3.1. Compactly supported basis functions

Theorem 3.2. Suppose that the function system {�j }j∈J satisfies the conditions of Lemma 2.1, let
u ∈ WN∞(Rn) and ε > 0 arbitrary. There exist polynomials Pj,k , independent of u, whose degrees
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are uniformly bounded, such that the quasi-interpolant

Mu(x) =
∑
k∈J

u(xk)
∑

st(xj )�xk

Pj,k(x)�j (x) (3.3)

satisfies the estimate

|Mu(x) − u(x)|�ChN
m sup

B(xm,
hm)

|∇N u| + ε |u(x)|, (3.4)

where xm is an arbitrary node and x is any point of the ball B(xm, hm). By 
 we denote a constant
greater than 1 which depends on c1 and c2 in (2.1). The constant C does not depend on hm, m

and ε.

Proof. For given ε we choose polynomials Pj (x) such that the function (2.3) satisfies

|�(x) − 1| < ε for all x ∈ Rn,

and introduce the auxiliary quasi-interpolant

M(1)u(x) =
∑
j∈J

⎛⎝N−1∑
|�|=0

��
u(xj )

�! (x − xj )
�

⎞⎠Pj (x)�j (x). (3.5)

We use the Taylor expansion u around y ∈ Rn

u(x) =
N−1∑
|�|=0

��
u(y)

�! (x − y)� + RN(y, x) (3.6)

with the remainder satisfying

|RN(y, x)|�cN |x − y|N sup
B(y,|x−y|)

|∇Nu|. (3.7)

Taking y = xj we write M(1)u(x) as

M(1)u(x) = u(x)�(x) −
∑
j∈J

RN(xj , x)Pj (x)�j (x),

which gives

|M(1)u(x) − u(x)|�
∑
j∈J

|RN(xj , x)Pj (x)�j (x)| + |u(x)| |�(x) − 1|.

This, together with the estimate for the remainder (3.7), shows that for x ∈ B(xm, hm)

|M(1)u(x) − u(x)|�C1h
N
m sup

B(xm,
hm)

|∇N u| + ε|u(x)|, (3.8)

where the ball B(xm, 
 hm) contains all balls B(xj , hj ) such that B(xj , hj ) and B(xm, hm)

intersect.



150 F. Lanzara et al. / Journal of Approximation Theory 145 (2007) 141–170

As the next step we approximate in M(1)u the values of the derivatives ��
u(xj ) by a linear

combination of u(xk), where xk ∈ st(xj ). Let {a(j)
� }1� |�|�N−1 be the unique solution of the

linear system with mN unknowns

N−1∑
|�|=1

a
(j)
�

�! (xk − xj )
� = u(xk) − u(xj ), xk ∈ st(xj ). (3.9)

Denoting by {b(j)
�,k} the elements of the inverse of Vj,hj

, cf. (3.2), the solution of (3.9) is given by

a
(j)
� = �!

h
|�|
j

∑
xk∈st(xj )

b
(j)
�,k (u(xk) − u(xj )).

If the derivatives {��
u(xj )} in (3.5) are replaced by {a(j)

� }, then we obtain the formula

Mu(x) =
∑
j∈J

⎧⎨⎩u(xj )

⎛⎝1 −
∑

xk∈st(xj )

N−1∑
|�|=1

b
(j)
�,k

(
x − xj

hj

)�
⎞⎠

+
∑

xk∈st(xj )

u(xk)

N−1∑
|�|=1

b
(j)
�,k

(
x − xj

hj

)�
⎫⎬⎭ Pj (x)�j (x)

=
∑
j∈J

∑
xk∈st(xj )

u(xk) Pj,k(x) �j (x),

which can be rewritten as the quasi-interpolant (3.3). From (3.6) and (3.9) follows that

N−1∑
|�|=1

h
|�|
j

�! (a
(j)
� − ��

u(xj ))

(
xk − xj

hj

)�

= RN(xj , xk),

hence the boundedness of ‖V −1
j,hj

‖ from Condition 3.1 and the estimate of the remainder (3.7)
imply

|a(j)
� − ��

u(xj )|��! C2 h
N−|�|
j sup

B(xj ,hj )

|∇Nu|.

Therefore, we obtain the inequality

|Mu(x) − M(1)u(x)|�C2

∑
j∈J

hN
j sup

B(xj ,hj )

|∇Nu|
N−1∑
|�|=1

∣∣∣∣x − xj

hj

∣∣∣∣|�|
|Pj (x)�j (x)|

and, for any x ∈ B(xm, hm),

|Mu(x) − M(1)u(x)|�C3 hN
m sup

B(xm,
hm)

|∇Nu|.

This inequality and (3.8) lead to (3.4). �
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3.2. Quasi-interpolants with noncompactly supported basis functions

Theorem 3.3. Suppose that in addition to the conditions of Lemma 2.3 the inequality

∥∥∥∑
j∈J

(
1 + h−1

j | · − xj |
)N−K ∥∥∥

L∞
< ∞ (3.10)

is fulfilled, let u ∈ WN∞(Rn) and ε > 0 arbitrary. There exist polynomials Pj,k , independent of u,
whose degrees are uniformly bounded, such that the quasi-interpolant

Mu(x) =
∑
k∈J

u(xk)
∑

st(xj )�xk

Pj,k

(
x − xj

hj

)
�

(
x − xj

hj

)
(3.11)

satisfies the estimate

|Mu(x) − u(x)|�C sup
m∈J

hN
m ‖∇N u‖L∞ + ε |u(x)|. (3.12)

The constant C does not depend on u and ε.

Proof. Analogously to (3.5) we introduce the quasi-interpolant

M(1)u(x) =
∑
j∈J

⎛⎝N−1∑
|�|=0

��
u(xj )

�! (x − xj )
�

⎞⎠Pj

(
x − xj

hj

)
�

(
x − xj

hj

)

and obtain the estimate

|M(1)u(x) − u(x)|�
∑
j∈J

∣∣∣∣RN(x, xj )Pj

(
x − xj

hj

)
�

(
x − xj

hj

)∣∣∣∣+ |u(x)(�(x) − 1)|.

From (2.12) we have

∣∣∣∣Pj

(
x − xj

hj

)
�

(
x − xj

hj

)∣∣∣∣ � 1

c

∣∣∣∣�(x − xj

hj

)∣∣∣∣+ ε

cK

(
1 + |x − xj |

hj

)−K

,

with the lower bound c of s(x) (see (2.2)). Together with (2.9) and (3.7) this provides∣∣∣∣RN(xj , x)Pj

(
x − xj

hj

)
�

(
x − xj

hj

)∣∣∣∣
�cNhN

j ‖∇N u‖L∞

∣∣∣∣x − xj

hj

∣∣∣∣N (c�,p

c
w�,p

(
x − xj

hj

)
+ ε

cK

)(
1 +

∣∣∣∣x − xj

hj

∣∣∣∣)−K

,
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resulting in

|M(1)u(x) − u(x)| � |u(x)| |�(x) − 1| + cN sup
m∈J

hN
m ‖∇N u‖L∞

×
⎛⎝c�,p

c

∥∥w�,p|x|N∥∥
L∞

∑
j∈J

(
1 +

∣∣∣∣x − xj

hj

∣∣∣∣)−K

+ ε

cK

∑
j∈J

(
1 +

∣∣∣∣x − xj

hj

∣∣∣∣)N−K
⎞⎠ .

Now we can proceed as in the proof of Theorem 3.2. �

Remark 3.4. Let the parameter �x be chosen for a fixed x so that

∑
|xj −x|>�x

w�,p

(
x − xj

hj

) ∣∣∣∣x − xj

hj

∣∣∣∣N (1 +
∣∣∣∣x − xj

hj

∣∣∣∣)−K

< ε.

Then the estimate (3.12) can be sharpened to

|Mu(x) − u(x)|�C max|xj −x|��x
hN

j sup
B(x,�x)

|∇N u| + ε
(|u(x)| + ‖∇N u‖L∞

)
.

4. Application to the computation of integral operators

Here we discuss a direct application of the quasi-interpolation formula (3.11) for the important
example �(x) = e−|x|2 . Suppose that the density of the integral operator with radial kernel

Ku(x) =
∫

Rn
g(|x − y|)u(y) dy (4.1)

is approximated by the quasi-interpolant

Mu(x) =
∑
j∈J

∑
xk∈st(xj )

u(xk) Pj,k

(
x − xj

hj

)
e−|x−xj |2/h2

j . (4.2)

Using the following lemma it is easy to derive a cubature formula for (4.1).

Lemma 4.1. Any P(x) =
L∑

|�|=0

c� x� can be written as

P(x) = e |x|2
L∑

|�|=0

c� S�(�x) e−|x|2 ,

with the polynomial S�(t) being defined by

S�(t) =
(

1

2 i

)|�|
H�

(
t

2 i

)
, (4.3)
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where H� denotes the Hermite polynomial of n variables

H�(t) = e |t|2(−�t)
�e−|t|2 .

Proof. We are looking for the polynomial S�(t) defined by the relation

x�e−|x|2 = S�(�x)e
−|x|2 , x ∈ Rn. (4.4)

Taking the Fourier transforms

F(S�(�x)e
−|x|2)(
) = �n/2e−�2|
|2S�(2�i
)

and

F(x�e−|x|2)(
) = �n/2
(

− �


2�i

)�

e−�2|
|2

we obtain (4.3). �

In view of Lemma 4.1 we can write Pj,k(x) e−|x|2 = Tj,k(�x) e−|x|2 with some polynomials
Tj,k(x). Then (4.2) can be rewritten as

Mu(x) =
∑
j∈J

∑
xk∈st(xj )

u(xk) Tj,k(hj �x) e−|x−xj |2/h2
j .

The cubature formula for the integral Ku is obtained by replacing u by its quasi-interpolant Mu

K̃u(x) = KMu(x)

=
∑
j∈J

∑
xk∈st(xj )

u(xk) Tj,k(hj �x) hn
j

∫
Rn

g(hj |z|) e−|z−tj |2 dz, (4.5)

where tj = (x − xj )/hj . By introducing spherical coordinates in Rn we obtain∫
Rn

g(hj |z|)e−|z−tj |2 dz = e−|tj |2
∫ ∞

0
n−1g(hj) e−2

d
∫

Sn−1
e2|tj | cos(�tj ,�) d��,

where Sn−1 is the unit sphere in Rn. The integral over Sn−1 can be represented by means of the
modified Bessel functions of the first kind In in the following way:∫

Sn−1
e2|tj | cos(�tj ,�) d�� = 2 �(n−1)/2

�( n−1
2 )

∫ �

0
e2|tj | cos ϑ(sin ϑ)n−2 dϑ

= 2�n/2( |tj |)1−n/2I(n−2)/2(2|tj |)
(see [24, p.154] and [25, p.79]). Using the notation

Lj (r) = 2 �n/2 r1−n/2e−r2
∫ ∞

0
n/2 e−2

g(hj ) I(n−2)/2(2 r) d,

relation (4.5) leads to the following cubature formula for the integral Ku

K̃u(x) =
∑
j∈J

hn
j

∑
xk∈st(xj )

u(xk) Tj,k(hj �x) Lj

( |x − xj |
hj

)
.
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5. Construction of the �-function with Gaussians

In this section we propose a method to construct the approximate partition of unity for the basis
functions

�j (x) = (� D)−n/2e−|x−xj |2/(h2
j D)

if the set of nodes X = {xj }j∈J satisfy the following condition piecewise with different grid
sizes hj .

Condition 5.1. There exist a domain �, h > 0 and �1 > 0 such that for any j ∈ Zn ∩ � the ball
B(hj, h�1) centered at hj with radius h�1 contains nodes of X.

5.1. Scattered nodes close to a piecewise uniform grid

Let us explain the assumption on the nodes: Suppose that the nodes are located in some domain
�1 ⊂ Rn and satisfy Condition 5.1 with h = h1. A subset of nodes xk ∈ X2 lie in a bounded
subdomain �2 ⊂ �1 and satisfy Condition 5.1 with h = h2 = Hh1 for some small H . To keep
good local properties of quasi-interpolants one wants to approximate the data at these nodes by
functions of the form polynomial times e−|x−xk |2/(h2

2D), whereas outside �2 quasi-interpolants
with functions of the form polynomial times e−|x−xj |2/(h2

1D) should be used.
Our aim is to develop a simple method to construct polynomials Pj such that

�(x) = (� D)−n/2

⎧⎨⎩ ∑
xj ∈X1

Pj

(
x − xj

h1
√

D

)
e−|x−xj |2/(h2

1D)

+
∑

xk∈X2

Pk

(
x − xk

h2
√

D

)
e−|x−xk |2/(h2

2D)

⎫⎬⎭ (5.1)

is almost the constant function 1 for x ∈ �1. Here X2 denotes the set of nodes xk ∈ �2 and
the X1 contains the remaining nodes X \ X2 and possibly some auxiliary nodes outside the
domain �1.

First we derive a piecewise uniform grid on Rn which is associated to the splitting of the set of
scattered nodes into X1 and X2. We start with Poisson’s summation formula for Gaussians

(� D)−n/2
∑

m∈Zn

e−|x−h1m|2/h2
1D =

∑
k∈Zn

e−�2D|k|2 e 2�i(x,k)/h1 ,

which shows that∣∣∣∣∣∣1 − (� D)−n/2
∑

m∈Zn

e−|x−h1m|2/h2
1D

∣∣∣∣∣∣ �C1 e−�2D,

with some constant C1 depending only on the space dimension.
Obviously, for any ε > 0 there exists D > 0 and a subset Z ∈ Zn such that the function system

{e−|x−h1m|2/h2
1D}m∈Z forms an approximate partition of unity on the domain �1 with accuracy

ε. We can represent any of these functions very accurately by a linear combination of dilated
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Gaussians due to the equation (see [16])

e−|x|2/D1 =
(

D1

�D(D1 − h2D)

)n/2 ∑
m∈Zn

e −h2|m|2/(D1−h2D) e −|x−hm|2/h2D

−e−|x|2/D1
∑

k∈Zn\{0}
e 2�i(D1−h2D)(x,k)/hD1 e −�2D(D1−h2D)|k|2/D1 , (5.2)

which is valid for any D1 > h2D > 0. Applied to our setting with h = h2 and D1 = h2
1D we

obtain the approximate refinement relation∣∣∣∣∣∣e−|x|2/h2
1D −

∑
k∈Zn

ak e−|x−h2k|2/h2
2D

∣∣∣∣∣∣ �C2 e−|x|2/h2
1D e−�2D(1−H 2) (5.3)

(because by assumption h2 = Hh1) with the coefficients

ak = e−H 2|k|2/(1−H 2)D

(�D(1 − H 2))n/2 .

Again, the constant C2 depends only on the space dimension. Define by S ∈ Zn the minimal index
set such that∑

k∈Zn\S
ak < e−�2D(1−H 2).

Then it is clear from (5.3) that for any disjoint Z1 and Z2 with Z1 ∪ Z2 = Z

max
x∈�1

∣∣∣∣∣∣1 − (� D)−n/2

⎛⎝∑
m∈Z1

e−|x−h1m|2/h2
1D +

∑
m∈Z2

∑
k∈S

ak e−|x−h1m−h2k|2/h2
2D

⎞⎠∣∣∣∣∣∣
�C3 e−�2D(1−H 2). (5.4)

Condition 5.2. Denote Z2 = {m ∈ Zn : h1m + h2k ∈ �2 for all k ∈ S}. The constant �1 of
Condition 5.1 and the domain �2 are such that for all nodes xk ∈ �2, i.e. the nodes belonging to
X2, one can find m ∈ Z2, k ∈ S with |xk − h1m − h2k| < �1h2.

Setting Z1 = Z \ Z2 we connect the index sets Z1, Z2 with the splitting of the scattered nodes
into X1, X2, where the set X1 is formed by the nodes X\X2 and, additionally, the nodes h1m /∈ �1,
m ∈ Z1.

By this way we construct an approximate partition of unity on the domain �1 using Gaussians
with the "large" scaling factor h1 centered at the uniform grid G1 := {h1m}m∈Z1 outside �2
and using Gaussians with scaling factor h2 and the centers G2 := {h1m + h2k}m∈Z2,k∈S

in �2.
It is obvious, that the above definition of piecewise quasi-uniformly distributed scattered nodes

and the construction of an associated approximate partition of unity on piecewise uniform grids
can be extended to finitely many scaling factors h�. Since there will be no difference for the
subsequent considerations we will restrict to the two-scale case.
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From (5.4) we see that for any ε > 0, and given h1 and h2 there exists D > 0 such that the
linear combination

(� D)−n/2

⎛⎝ ∑
g1∈G1

e−|x−g1|2/(h2
1D) +

∑
g2∈G2

ãg2 e−|x−g2|2/(h2
2D)

⎞⎠ , (5.5)

with ãg2 = ak for g2 = h1m + h2k, m ∈ Z2, k ∈ S, approximates in �1 the constant function
1 with an error less than ε/2. The idea of constructing the �-function (5.1) is to choose for each
g1 ∈ G1 and g2 ∈ G2 finite sets of nodes �(g1) ⊂ X1 and �(g2) ⊂ X2, respectively, and to
determine polynomials Pj,g�

such that∑
xj ∈�(g�)

Pj,g�

(
x − xj

h�

√
D

)
e−|x−xj |2/(h2

�D) approximate e−|x−g�|2/(h2
�D), � = 1, 2.

Note that in the case g1 /∈ �1 by construction g1 ∈ X1, then trivially �(g1) = g1 with the
corresponding polynomial P1,g1 = 1. Therefore in the following we always assume g� ∈ �1.

If the L∞-error of the sums over g� can be controlled, then we get∑
g1∈G1

e−|x−g1|2/(h2
1D) �

∑
xj ∈X1

Pj

(
x − xj

h1
√

D

)
e−|x−xj |2/(h2

1D),

with the polynomials

Pj =
∑

g1∈G(xj )

Pj,g1 (5.6)

and ∑
g2∈G2

ãg2 e−|x−g2|2/(h2
2D) �

∑
xk∈X2

Pk

(
x − xk

h2
√

D

)
e−|x−xk |2/(h2

2D),

with the polynomials

Pk =
∑

g2∈G(xk)

ãg2Pk,g2 , (5.7)

where we denote G(xj ) = {g : xj ∈ �(g)}. Note that we have to choose the sets of nodes �(g�)

such that G(xj ) ⊂ G� are nonempty finite sets for any node xj ∈ X�. Additionally, one has to
choose these sets such that for some �1 > 0 and any g� ∈ G� the ball B(g�, �1h�) contains at
least one node xj ∈ X�. This is always possible, since Conditions 5.1 resp. 5.2 are valid.

The proposed method for constructing an approximate partition of unity does not require solving
a large algebraic system. Instead, to obtain the local representation of � one has to solve a small
number of approximation problems, which are reduced in the next subsection to linear systems
of moderate size.

After this preparation we write � as

�(x) = (� D)−n/2
∑

g1∈G1

e−|x−g1|2/(h2
1D) +

∑
g1∈G1

�g1

(
x
h1

)

+(� D)−n/2
∑

g2∈G2

ãg2 e−|x−g2|2/(h2
2D) +

∑
g2∈G2

ãg2�g2

(
x
h2

)
,
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where

�g�
(y) = (� D)−n/2

⎧⎨⎩ ∑
h�yj ∈�(g�)

Pj,g�

(
y − yj√

D

)
e−|y−yj |2/D − e−|y−g�/h�|2/D

⎫⎬⎭ , (5.8)

with yj = xj /h�, xj ∈ X�. Hence for sufficiently large D and all x ∈ �1

|�(x) − 1| <
ε

2
+

∑
g1∈G1

∣∣∣∣�g1

(
x
h1

)∣∣∣∣+ ∑
g2∈G2

ãg2

∣∣∣∣�g2

(
x
h2

)∣∣∣∣ . (5.9)

5.2. Construction of polynomials

Let us introduce

�(y) := (� D)−n/2

⎧⎨⎩∑
yj ∈�

Pj

(
y − yj√

D

)
e−|y−yj |2/D − e−|y|2/D

⎫⎬⎭ , (5.10)

where � is some finite point set in Rn. We will describe a method for constructing polynomials Pj

such that e �|y|2 |�(y)| for some � > 0 becomes small. In what follows we use the representation

Pj (x) =
Lj∑

|�|=0

cj,� x�.

Hence by Lemma 4.1

Pj

(
y − yj√

D

)
e−|y−yj |2/D =

Lj∑
|�|=0

cj,� S�(
√

D�y) e−|y−yj |2/D,

and � can be written as

�(y) = (�D)−n/2

⎛⎝∑
yj ∈�

Lj∑
|�|=0

cj,� S�(
√

D�y) e−|y−yj |2/D − e−|y|2/D
⎞⎠ . (5.11)

To estimate the L∞-norm of � we represent this function as convolution.

Lemma 5.1. Let P be a polynomial and let 0 < D0 < D. Then

P(�x) e−|x−y|2/D = c1 e−|x|2/(D−D0) ∗ P(�x) e−|x−y|2/D0 ,

where ∗ stands for the convolution operator and

c1 =
(

D

�D0(D − D0)

)n/2

.

Proof. From

e−|x−y|2/D = c1

∫
Rn

e−|x−t|2/(D−D0) e−|t−y|2/D0 dt
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we obtain

P(�x)e
−|x−y|2/D = P(−�y)e

−|x−y|2/D

= c1

∫
Rn

e−|x−t|2/(D−D0) P(�t)e
−|t−y|2/D0 dt. �

Using Lemma 5.1 and (5.11) we write � as

�(y) = c1

(�D)n/2

∫
Rn

e−|y−t|2/(D−D0)Gc(t) dt, (5.12)

where we denote for c = {cj,�}

Gc(t) =
∑
yj ∈�

Lj∑
|�|=0

cj,� S�(
√

D�t)e
−|t−yj |2/D0 − e −|t|2/D0 . (5.13)

Then, by Cauchy’s inequality, we obtain

‖�‖L∞ �c2 ‖Gc‖L2 ,

where

c2 = (�D0)
−n/2(2�(D − D0))

−n/4.

An estimate for the sum of |�g�
| can be derived from

Lemma 5.2. Let 0 < D0 < D and denote � = D − D0

(D − D0)2 + DD0
. Then the estimate

sup
Rn

|�(y)| e �|y|2 �c3

√
Q(c) (5.14)

is valid, where for c = {cj,�} the quadratic form Q(c) is defined by

Q(c) =
∫

Rn
e2(D−D0)|t|2/(DD0) (Gc(t))2 dt, (5.15)

with Gc from (5.13) and

c3 = Dn/4

(2�3D0(D − D0)((D − D0)2 + DD0))n/4 .

Proof. Starting with (5.12) and using

|x − t|2 =
∣∣∣∣√ax − t√

a

∣∣∣∣2 + (1 − a)|x|2 + a − 1

a
|t|2

for a > 0, we derive the representation

�(y) = c1
e−(1−a)|y|2/(D−D0)

(�D)n/2

∫
Rn

e−|t−ax|2/(a(D−D0)) e(1−a)|t|2/(a(D−D0))Gc(t) dt.
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Then Cauchy’s inequality leads to∣∣∣�(y) e(1−a)|y|2/(D−D0)
∣∣∣ �c3

(∫
Rn

e2(1−a)|t|2/a(D−D0) (Gc(t))2 dt
)1/2

, (5.16)

with

c3 = (�D0)
−n/2

(
a

2�(D − D0)

)n/4

.

If we choose the parameter a such that

(1 − a)|t|2
a(D − D0)

− |t|2
D0

= −|t|2
D

, i.e. a = D D0

(D − D0)2 + D D0
,

then the right-hand side of (5.16) takes the form (5.15). �

Next we find an explicit expression of the quadratic form Q(c). Using (5.13), after elementary
calculations one obtains

Q(c) =
(

�D

2

)n/2
⎛⎝1 − 2

∑
yj ∈�

Lj∑
|�|=0

cj,� C�,0(yj , 0)

+
∑

yj ,yk∈�

Lj∑
|�|=0

Lk∑
|�|=0

cj,� ck,� C�,�(yj , yk)

⎞⎠ ,

where the function C�,� is given by

C�,�(x, y) = S�(−√
D�x)S�(−

√
D�y) e −(D|x−y|2/2−(D−D0)(|x|2+|y|2))/D2

0 (5.17)

and the polynomials S� are defined in (4.3). Hence the minimum of Q(c) is attained by the
solution c = {cj,�} of the linear system

∑
yj ∈�

Lj∑
|�|=0

cj,� C�,�(yj , yk) = C0,�(0, yk), yk ∈ �, 0� |�|�Lk. (5.18)

Then by Lemma 5.2 the sum

∑
yj ∈�

Pj

(
y − yj√

D

)
e−|y−yj |2/D =

∑
yj ∈�

Lj∑
|�|=0

cj,�

(
y − yj√

D

)�

e−|y−yj |2/D (5.19)

approximates e−|y|2/D with

(� D)−n/2

∣∣∣∣∣∣e−|y|2/D −
∑
yj ∈�

Pj

(
y − yj√

D

)
e−|y−yj |2/D

∣∣∣∣∣∣ �c3 e −�|y|2r1/2,

where � and c3 are given in Lemma 5.2 and

r := min
c

Q(c). (5.20)

In the next section we show that (5.18) has a unique solution and give an estimate of r .
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5.3. Existence and estimates

Let us give another representation of Q(c) defined by (5.15). We define polynomials T� by

T�(x) = e |x|2/D0S�(
√

D�x)e
−|x|2/D0 (5.21)

and introduce the transformed points

tj = D

D0
yj , yj ∈ �.

Then, because of

D − D0

D D0
|t|2 − 1

D0
|t − yj |2 = − 1

D
|t − tj |2 + D − D0

D2
0

|yj |2

and in view of (5.13) the quadratic form Q(c) can be written as

Q(c) =
∫

Rn

⎛⎝e−|t|2/D −
∑
yj ∈�

Lj∑
|�|=0

c̃j,�T�(t − yj ) e−|t−tj |2/D
⎞⎠2

dt, (5.22)

with

c̃j,� = e(D−D0)|yj |2/D2
0 cj,�.

Since T� are polynomials of degree |�|, the minimum problem for Q(c) is equivalent to finding
the best L2 approximation

min
dj,�

∫
Rn

⎛⎝e−|t|2/D −
∑
yj ∈�

Lj∑
|�|=0

dj,�(t − tj )� e−|t−tj |2/D
⎞⎠2

dt.

Lemma 5.3. Let {xj } a finite collection of nodes. For all Lj �0 the polynomials Pj of degree
Lj , which minimize∥∥∥e−| · |2 −

∑
j

Pj ( · − xj ) e−| · −xj |2
∥∥∥

L2
, (5.23)

are uniquely determined.

Proof. The application of Lemma 4.1 gives for Pj (x) =
Lj∑

|�|=0

dj,� x�∥∥∥e−| · |2 −
∑
j

Pj ( · − xj )e
−| · −xj |2

∥∥∥2

L2

=
∫

Rn

⎛⎝e−|x|2 −
∑
j

Lj∑
|�|=0

dj,� S�(�x) e−|x−xj |2
⎞⎠2

dx

=
(�

2

)n/2

⎛⎝1 − 2
∑
j

Lj∑
|�|=0

dj,�B�,0(xj , 0) +
∑
j,k

Lj ,Lk∑
|�|,|�|=0

dj,�dk,�B�,�(xj , xk)

⎞⎠ ,
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where we use the notation

B�,�(x, y) = S�(−�x) S�(−�y) e−|x−y|2/2.

The coefficients {dj,�} minimize (5.23) if they satisfy the system of linear equations

∑
j

Lj∑
|�|=0

dj,� B�,�(xj , xk) = B0,�(0, xk). (5.24)

Hence the uniqueness of the polynomials Pj is equivalent to the invertibility of the matrix
‖B�,�(xj , xk)‖ of the system (5.24). In the following we show that this matrix is positive definite.
We use the representation

e−|x−y|2/2 = (2�)−n/2
∫

Rn
e−|t|2/2ei(t,x)e−i(t,y) dt,

which implies

B�,�(x, y) = (2�)−n/2
∫

Rn
S�(−it) S�(−it) e−|t|2/2ei(t,x)e−i(t,y) dt.

Let {vj,�} be a constant vector and consider the sesquilinear form∑
j,k

Lj ,Lk∑
|�|,|�|=0

B�,�(xj , xk) vj,� vk,�

= (2�)−n/2
∑
j,k

Lj ,Lk∑
|�|,|�|=0

vj,� vk,�

∫
Rn

S�(−it) S�(−it) e−|t|2/2e i(t,xj −xk) dt

= (2�)−n/2
∫

Rn
e−|t|2/2

∣∣∣∣∣∣
∑
j

Lj∑
|�|=0

vj,� S�(−it) ei(t,xj )

∣∣∣∣∣∣
2

dt�0.

The change of integration and summation is valid because the integrand is absolutely integrable
and the sums are finite. We have to show that the inequality is strict when {vj,�} �= 0. This is
equivalent to showing that

�(t) =
∑
j

Lj∑
|�|=0

vj,� S�(−it) ei(t,xj ) = 0

identically only if vj,� = 0 for all j and �. To this end similar to [21, Lemma 3.1] we introduce
the function

fε(x) :=
∫

Rn
e−ε2|t|2/4 �(t) e−i(t,x) dt =

∑
j

Lj∑
|�|=0

vj,� S�(�x)

∫
Rn

e−ε2|t|2/4 e i(t,xj −x) dt

= ε−n
∑
j

Lj∑
|�|=0

vj,� S�(�x)

∫
Rn

e−|t|2/4 e i(t,xj −x)/ε dt

=
(

4�

ε2

)n/2∑
j

Lj∑
|�|=0

vj,� S�(�x)e
−|x−xj |2/ε2

.
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Let us fix an index k and consider the function fε(x) on the ball B(xk, ε) for sufficiently small
ε > 0. If x ∈ B(xk, ε) and xj �= xk , then obviously S�(�x)e−|x−xj |2/ε2 → 0 as ε → 0. Since
fε(x) = 0, for any � > 0 there exists ε0 such that for all ε ∈ (0, ε0) and x ∈ B(xk, ε)∣∣∣∣∣∣

Lk∑
|�|=0

vk,� S�(�x)e
−|x−xk |2/ε2

∣∣∣∣∣∣ < �. (5.25)

Setting t = (x − xk)/ε we obtain therefore from (5.25)∣∣∣∣∣∣
Lk∑

|�|=0

vk,� S�(ε−1�t)e
−|t|2

∣∣∣∣∣∣ = e−|t|2
∣∣∣∣∣∣

Lk∑
|�|=0

ε−|�| p�(t)

∣∣∣∣∣∣ < �

for all |t|�1 and ε ∈ (0, ε0), where p� are certain polynomials of degree |�| not depending on ε.
The inequality is valid for any � > 0 only if these polynomials vanish, which implies for ε = 1

Lk∑
|�|=0

vk,� S�(�x)e
−|x−xk |2 = 0.

Since by (4.4)

S�(�x)e
−|x−xk |2 = (x − xk)

�e−|x−xk |2 ,

we conclude vk,� = 0 for all �. �

Let now for given � and degrees Lj the coefficient vector c = {cj,�} be a unique solution of
the linear system (5.18). To estimate r = Q(c) we denote by yk ∈ � the point closest to 0 and by
Lk the degree of the polynomial Pk .

Lemma 5.4. The minimal value (5.20) can be estimated by

r �
(�

2

)n/2 DLk+1+n/2 |yk|2(Lk+1)

D
2(Lk+1)
0 (Lk + 1)!

.

Proof. It follows from the representation (5.22) that

r =
∫

Rn

⎛⎝∑
yj ∈�

Lj∑
|�|=0

c̃j,�T�(t − yj ) e−|t−tj |2/D − e−|t|2/D
⎞⎠2

dt

� min
P∈�Lk

∫
Rn

(
P(t)e−|t−tk |2/D − e−|t|2/D)2

dt

=
(

D

2

)n/2

min
P∈�Lk

∫
Rn

e−|t|2 (P(t) − e−|zk |2 e−√
2(t,zk)

)2
dt,
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with tk = Dyk/D0, zk = √
Dyk/D0, and �Lk

denotes the set of polynomials of degree Lk . The
minimum is attained when

P(t) = 1√
2|�|�!�n/2

Lk∑
|�|=0

a�H�(t),

with the coefficients

a� = e−|zk |2
√

2|�| �! �n/2

∫
Rn

e−|t|2H�(t)e−√
2(t,zk) dt

= e−|zk |2
√

2|�|�!�n/2

∫
Rn

e−√
2(t,zk)(−�t)

�e−|t|2 dt.

Integrating by parts, we obtain

a� = �n/4 (−1)|�|z�
k√

�! e−|zk |2/2,

which together with

∞∑
|�|=Lk+1

z2�
k

�! =
∞∑

s=Lk+1

|zk|2s

s! � |zk|2(Lk+1)

(Lk + 1)! e|zk |2

leads to

r �
(

D

2

)n/2 ∞∑
|�|=Lk+1

|a�|2 = �n/2
(

D

2

)n/2 |zk|2(Lk+1)

(Lk + 1)! . �

5.4. Approximate partition of unity with Gaussians

Now we are in a position to prove the main result of this section. Suppose that the nodes {xj }j∈J

are as described in Section 5.1 and let G1 ∪ G2 be the associated piecewise uniform grid with
stepsizes h1 and h2. Assign a finite set of nodes �(g�) to each grid point g� ∈ G�, � = 1, 2, fix a
common degree L for all polynomials Pj in (5.1) and a positive number D0 < D, and solve the
linear system

∑
xj ∈�(g�)

L∑
|�|=0

C�,�

(
xj − g�

h�

,
xk − g�

h�

)
cj,�(g�) = C0,�

(
0,

xk − g�

h�

)
(5.26)

for all xk ∈ �(g�) and 0� |�|�L. Following (5.19) define the polynomials

Pj

(
x − xj

h1
√

D

)
=

∑
g1∈G(xj )

L∑
|�|=0

cj,�(g1)

(
x − xj

h1
√

D

)�

, xj ∈ X1,

Pk

(
x − xk

h2
√

D

)
=

∑
g2∈G(xk)

L∑
|�|=0

ãg2ck,�(g2)

(
x − xk

h2
√

D

)�

, xk ∈ X2. (5.27)
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Recall that if xj ∈ X1 is an additional node xj = h1m /∈ �1, m ∈ Z1, then G(xj ) = xj and the
corresponding polynomial Pj = 1.

Theorem 5.5. Under Conditions 5.1 and 5.2 on the set of scattered nodes X for any ε > 0 there
exist D > 0 and L such that the function (5.1) is an approximate partition of unity satisfying

|�(x) − 1| < ε for all x ∈ �1,

if the polynomials {Pj } of degree L are generated via (5.27) by the solutions {cj,�(g�)} of the
linear systems (5.26) for all g� ∈ G1 ∪ G2.

Proof. From (5.9) we have to show that

sup
Rn

⎛⎝ ∑
g1∈G1

∣∣∣∣�g1

(
x
h1

)∣∣∣∣+ ∑
g2∈G2

ãg2

∣∣∣∣�g2

(
x
h2

)∣∣∣∣
⎞⎠ � ε

2
(5.28)

if L is sufficiently large. We start with estimating the first sum

∑
g1∈G1

∣∣∣∣�g1

(
x
h1

)∣∣∣∣ ,
where g1 = h1m, m ∈ Z1 ⊂ Zn. Using (5.10) we can write

�g1

(
x
h1

)
= �

(
x
h1

− m
)

,

where the points yj in (5.10) are given by yj = xj /h1 − m, xj ∈ �(g1). By Lemmas 5.2 and 5.4
we have

∑
g1∈G1

∣∣∣∣�g1

(
x
h1

)∣∣∣∣ �c4

∑
m∈Z1

e−�|x/h1−m|2 D(L�m +1+n/2)/2

D
L�m +1
0

√
(L�m

+ 1)!

∣∣∣∣x�m

h1
− m

∣∣∣∣L�m +1

,

where c4 = c3 (�/2)n/4, x�m
∈ �(g1) is the node closest to g1 = h1m and L�m

is the degree of
the polynomial P�m,g1 . Since |x�m

− h1m|��1h1 by Condition 5.1 and L�m
= L for all μm we

conclude that

∑
g1∈G1

∣∣∣∣�g1

(
x
h1

)∣∣∣∣ �c4
D(L+1+n/2)/2 �L+1

1

DL+1
0

√
(L + 1)! sup

Rn

∑
m∈Z1

e−�|x/h1−m|2 . (5.29)

From

� = D − D0

(D − D0)2 + DD0
∈ (0, D) for any D0 ∈ (0, D),
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we see, that for fixed D and D0∑
g1∈G1

∣∣∣∣�g1

(
x
h1

)∣∣∣∣ → 0 if L → ∞. (5.30)

We turn to∑
g2∈G2

ãg2

∣∣∣∣�g2

(
x
h2

)∣∣∣∣ ,
with g2 = h1m + h2k, m ∈ Z2, k ∈ S. Using (5.10) we have

�g2

(
x
h2

)
= �

(
x − mh1

h2
− k

)
,

and the points yj in (5.10) are given by yj = (xj − mh1)/h2 − k with xj ∈ �(g2). Hence∑
g2∈G2

ãg2

∣∣∣∣�g2

(
x
h2

)∣∣∣∣ =
∑

m∈Z2

∑
k∈S

ak

∣∣∣∣�(x − mh1

h2
− k

)∣∣∣∣
�c4

∑
m∈Z2

∑
k∈S

ake−�|(x−mh1)/h2−k|2 D(L�k +1+n/2)/2

D
L�k +1
0

√
(L�k

+ 1)!

∣∣∣∣x�k
− mh1

h2
− k

∣∣∣∣L�k +1

.

Here x�k
∈ �(g2) is the node closest to g2 = h1m +h2k and L�k

is the degree of the polynomial
P�k,g2 . By Condition 5.2 for fixed D and D0

D(L+1+n/2)/2

DL+1
0

√
(L + 1)!

∣∣∣∣x�k
− mh1

h2
− k

∣∣∣∣L+1

��(L) → 0 if L → ∞

uniformly for all g2 ∈ G2. Hence we obtain∑
g2∈G2

ãg2

∣∣∣∣�g2

(
x
h2

)∣∣∣∣ �C1�(L)
∑

m∈Z2

∑
k∈S

ake−�|(x−mh1)/h2−k|2 (5.31)

because of L�k
= L for all �k. The sum∑

k∈Zn

ake−�|(x−mh1)/h2−k|2

=
(

h2
1

�D(h2
1 − h2

2)

)n/2 ∑
k∈Zn

e−h2
2|k|2/((h2

1−h2
2)D) e−�|x−mh1−h2k|2/h2

2

can be easily estimated by using Eq. (5.2). Setting

(h2
1 − h2

2)D = h2
1D1 − h2

2/�

we derive

D1 = D + h2
2

h2
1

(
1

�
− D

)
= D + H 2 D2

0

D − D0
.
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and after some algebra∑
k∈Zn

e−h2
2|k|2/(h2

1−h2
2)D e−�|x−h2k|2/h2

2

=
(

�D(1 − H 2)

�D1

)n/2

e−|x|2/(h2
1D1)

(
1 + O(e−�2D2(1−H 2)/D1)

)
.

Therefore, we obtain

sup
Rn

∑
m∈Z2

∑
k∈S

ake−�|(x−mh1)/h2−k|2 �C2 sup
Rn

∑
m∈Z2

e−|x−mh1|2/(h2
1D1) �C3,

with some constant C3 depending on D, D0 and the space dimension n. Now (5.28) follows
immediately from (5.30) and (5.31). �

5.5. Numerical experiments

We have tested the construction (5.27), (5.26) in the one- and two-dimensional case for randomly
chosen nodes with the parameters D = 2, h = 1, �1 = 1/2, D0 = 1 and D0 = 3/2. To see the
dependence of the approximation error on the number of nodes in �(m), m ∈ Z, and the degree
of polynomials we provide graphs of the difference to 1 for the following one-dimensional cases
:

• �(m) consists of 1 point, L = 3 and L = 4 (Fig. 1);
• �(m) consists of 3 points, L = 3 and L = 4 (Fig. 2);
• �(m) consists of 5 points, L = 2 and L = 3 (Fig. 3).

In all cases the choice D0 = 3/2 gives better results as can be seen from Fig. 1. All other figures
correspond to the parameter D0 = 3/2.

As expected, the approximation becomes better with increasing degree L and more points in
the subsets �(m). The use of only one node in �(m) reduces the approximation error by a factor
10−1 if L increases by 1. The cases of 3 and 5 points indicate, that enlarging the degree L of the
polynomials by 1 gives a factor 10−2 for the approximation error.

-1 -0.5 0.5 1

-0.002

-0.001

0.001

-1 -0.5 0.5 1
 -1*10-4

2*10-4

4*10-4

Fig. 1. The graph of �(x) − 1 when �(m) consists of 1 point, D = 2, L = 3 (on the left) and L = 4 (on the right). Solid
and dot-dashed line correspond to D0 = 3/2 and D0 = 1, respectively.
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-1 -0.5 0.5 1

 

1*10-7

8*10-9

4*10-9

-4*10-9

-8*10-9
-1*10-7

-1 -0.5 0.5 1

2*10-7

Fig. 2. The graph of �(x) − 1 when �(m) consists of 3 points, D = 2, D0 = 3/2, L = 3 (on the left) and L = 4 (on the
right). The saturation term obtained on uniform grid is depicted by dashed lines.

-1 -0.5 0.5 1

3*10-7

1*10-7

-2*10-7

6*10-9

4*10-9

2*10-9

-2*10-9

-4*10-9

-6*10-9

-1 -0.5 0.5 1

Fig. 3. The graph of �(x) − 1 when �(m) consists of 5 points, D = 2, D0 = 3/2, L = 2 (on the left) and L = 3 (on the
right). The saturation term obtained on uniform grid is depicted by dashed lines.

One should notice, that the plotted total error consists of two parts. Using (5.27, 5.26) we
approximate the �-function

(2�)−1/2
∑
m∈Z

e−(x−m)2/2 = 1 + 2
∞∑

j=1

e−2�2j2
cos 2�jx. (5.32)

Hence, the plotted total error is the sum of the difference between (5.1) and (5.32) and the function

2
∞∑

j=1

e−2�2j2
cos 2�jx, (5.33)

which is the saturation term obtained on the uniform grid. The error plots on the right in Figs. 2
and 3 show that the total error is already majorized by the saturation term (5.33), which is shown
by dashed lines.

In the following two Figs. 4 and 5 we depict the difference Mu(x) − u(x) for the quasi–
interpolation formula defined by (3.11) with Gaussian basis functions constructed via (5.27, 5.26)
with �(m) consisting of 5 points, and the approximation orders N = 2 and N = 4. For N = 2
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0.001

0.002

0.003

0.004
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-0.4 -0.2 0.2 0.4

0.0001

0.0002

0.0003

Fig. 4. The graph of Mu(x) − u(x) with N = 2, u(x) = (1 + x2)−1. Dashed and solid lines correspond to h = 1/16 and
h = 1/32 (on the left) and to h = 1/64 and h = 1/128 (on the right).

-0.5 0.5

-1*10-5

-0.5 0.5

-2*10-6

-6*10-6

2*10-6

-2*10-6

-6*10-6

-1*10-5

Fig. 5. The graph of Mu(x) − u(x) with N = 4, u(x) = x4 (on the right) and u(x) = (1 + x2)−1 (on the left). Dashed
and solid lines correspond to h = 1/32 and h = 1/64, respectively.

Table 1
L∞−approximation error for the function u(x) = (1 + x2)−1 in the interval (−1/2, 1/2) using Mu with N = 2 (on the
left) and N = 4 (on the right)

h N = 2 N = 4

2−3 1.89 × 10−2 1.81 × 10−3

2−4 5.72 × 10−3 1.38 × 10−4

2−5 1.51 × 10−3 1.01 × 10−5

2−6 3.81 × 10−4 6.65 × 10−7

2−7 9.65 × 10−5 4.20 × 10−8

we have used the parameters L = 4 (the degree of the polynomials Pj ), D = 2, D0 = 3/2, and
for N = 4 we have chosen L = 6, D = 4, D0 = 3.

The hN -convergence of these one-dimensional quasi-interpolants is confirmed in Table 1, which
contains the uniform error of Mu − u on the interval (−1/2, 1/2) for the function u(x) =
(1 + x2)−1 with different h.
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Fig. 6. The graph of �(x) − 1 when L = 1 and �(m) consists of 1 point (on the left) and 5 points (on the right).

-0.4
-0.2

0
0.2

0.4 -0.4

-0.2
0

0.2
0.4

-0.00005
-0.00004

-0.00003

-0.4
-0.2

0
0.2

0.4 -0.4

-0.2
0

0.2
0.4

-2.5×10-8
0

2.5×10-8
5×10-8

Fig. 7. The graph of �(x) − 1 when L = 4 and �(m) consists of 1 point (on the left) and 5 points (on the right).

Similar experiments have been performed for the two-dimensional case. Here we provide
graphs of

1 −
∑
xj ∈X

Pj

(
x − xj√

D

)
e−|x−xj |2/D

for the following cases :

• deg Pj = 1 and �(m) consists of 1 or 5 points (Fig. 6);
• deg Pj = 4 and �(m) consists of 1 or 5 points (Fig. 7).
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