251 research outputs found

    Polarization change due to fast winds from accretion disks

    Get PDF
    A fraction of the radiation produced by an accretion disk may be Thomson scattered by a wind flowing away from the disk. Employing a simple plane-parallel model of the wind, we calculate the polarization of the scattered radiation and find that its sign depends on the wind velocity, beta=v/c. In the case, 0.12 < beta < 0.78, the polarization is parallel to the disk normal, i.e., it is orthogonal to the standard Chandrasekhar's polarization expected from accretion disks. The velocity of an electron-positron wind is likely to saturate near the equilibrium value beta_* of order 0.5 for which the accelerating radiation pressure is balanced by the Compton drag. Then the change of polarization by the wind is most pronounced. This may help to reconcile the standard accretion disk model with the optical polarimetric observations of non-blazar AGNs.Comment: accepted for publication in ApJ Letter

    Is the Broad-Line Region Clumped or Smooth? Constraints from the H alpha Profile in NGC 4395, the Least Luminous Seyfert 1 Galaxy

    Full text link
    The origin and configuration of the gas which emits broad lines in Type I active galactic nuclei is not established yet. The lack of small-scale structure in the broad emission-line profiles is consistent with a smooth gas flow, or a clumped flow with many small clouds. An attractive possibility for the origin of many small clouds is the atmospheres of bloated stars, an origin which also provides a natural mechanism for the cloud confinement. Earlier studies of the broad-line profiles have already put strong lower limits on the minimum number of such stars, but these limits are sensitive to the assumed width of the lines produced by each cloud. Here we revisit this problem using high-resolution Keck spectra of the H alpha line in NGC 4395, which has the smallest known broad-line region (~10^14 cm). Only a handful of the required bloated stars (each having r~10^14 cm) could fit into the broad-line region of NGC 4395, yet the observed smoothness of the H alpha line implies a lower limit of ~10^4-10^5 on the number of discrete clouds. This rules out conclusively the bloated-stars scenario, regardless of any plausible line-broadening mechanisms. The upper limit on the size of the clouds is ~10^12 cm, which is comparable to the size implied by photoionization models. This strongly suggests that gas in the broad-line region is structured as a smooth rather than a clumped flow, most likely in a rotationally dominated thick disk-like configuration. However, it remains to be clarified why such a smooth, gravity-dominated flow generates double-peaked emission lines only in a small fraction of active galactic nuclei.Comment: 12 pages, including 3 figures, accepted for publication in The Astrophysical Journa

    Can we measure the accretion efficiency of Active Galactic Nuclei?

    Full text link
    The accretion efficiency for individual black holes is very difficult to determine accurately. There are many factors that can influence each step of the calculation, such as the dust and host galaxy contribution to the observed luminosity, the black hole mass and more importantly, the uncertainties on the bolometric luminosity measurement. Ideally, we would measure the AGN emission at every wavelength, remove the host galaxy and dust, reconstruct the AGN spectral energy distribution and integrate to determine the intrinsic emission and the accretion rate. In reality, this is not possible due to observational limitations and our own galaxy line of sight obscuration. We have then to infer the bolometric luminosity from spectral measurements made in discontinuous wavebands and at different epochs. In this paper we tackle this issue by exploring different methods to determine the bolometric luminosity. We first explore the trend of accretion efficiency with black hole mass (efficiency proportional to M^{\sim 0.5}) found in recent work by Davis & Laor and discuss why this is most likely an artefact of the parameter space covered by their PG quasar sample. We then target small samples of AGN at different redshifts, luminosities and black hole masses to investigate the possible methods to calculate the accretion efficiency. For these sources we are able to determine the mass accretion rate and, with some assumptions, the accretion efficiency distributions. Even though we select the sources for which we are able to determine the parameters more accurately, there are still factors affecting the measurements that are hard to constrain. We suggest methods to overcome these problems based on contemporaneous multi-wavelength data measurements and specifically targeted observations for AGN in different black hole mass ranges.Comment: 16 pages, 20 figures, accepted for publication in MNRA

    Q2237+0305 in X-rays: spectra and variability with XMM-Newton

    Full text link
    X-ray observations of gravitationally lensed quasars may allow us to probe the inner structure of the central engine of a quasar. Observations of Q2237+0305 (Einstein Cross) in X-rays may be used to constrain the inner structure of the X-ray emitting source. Here we analyze the XMM-Newton observation of the quasar in the gravitational lens system Q2237+0305 taken during 2002. Combined spectra of the four images of the quasar in this system were extracted and modelled with a power-law model. Statistical analysis was used to test the variability of the total flux. The total X-ray flux from all the images of this quadruple gravitational lens system is 6 x 10^{-13} erg/cm2/s in the range 0.2-10 keV, showing no significant X-ray spectral variability during almost 42 ks of the observation time. Fitting of the cleaned source spectrum yields a photon power-law index of Gamma=1.82+0.07/-0.08. The X-ray lightcurves obtained after background subtraction are compatible with the hypothesis of a stationary flux from the source.Comment: 6 pages, 7 figures, 4 tables, accepted by A&

    Disclosing the Radio Loudness Distribution Dichotomy in Quasars: An Unbiased Monte Carlo Approach Applied to the SDSS-FIRST Quasar Sample

    Get PDF
    We investigate the dichotomy in the radio loudness distribution of quasars by modelling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8,300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with 12+/-1 % of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average "louder", and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.Comment: Accepted for publication in ApJ; 13 pages, 10 figure

    Thermal disc emission from a rotating black hole: X-ray polarization signatures

    Full text link
    Thermal emission from the accretion disc around a black hole can be polarized, due to Thomson scattering in a disc atmosphere. In Newtonian space, the polarization angle must be either parallel or perpendicular to the projection of the disc axis on the sky. As first pointed out by Stark and Connors in 1977, General Relativity effects strongly modify the polarization properties of the thermal radiation as observed at infinity. Among these effects, the rotation of the polarization angle with energy is particularly useful as a diagnostic tool. In this paper, we extend the Stark and Connors calculations by including the spectral hardening factor, several values of the optical depth of the scattering atmosphere and rendering the results to the expected performances of planned X-ray polarimeters. In particular, to assess the perspectives for the next generation of X-ray polarimeters, we consider the expected sensitivity of the detectors onboard the planned POLARIX and IXO missions. We assume the two cases of a Schwarzschild and an extreme Kerr black hole with a standard thin disc and a scattering atmosphere. We compute the expected polarization degree and the angle as functions of the energy as they could be measured for different inclinations of the observer, optical thickness of the atmosphere and different values of the black hole spin. We assume the thermal emission dominates the X-ray band. Using the flux level of the microquasar GRS 1915+105 in the thermal state, we calculate the observed polarization.Comment: 8 pages, 7 figures, accepted by MNRA

    Effects of Kerr Spacetime on Spectral Features from X-Ray Illuminated Accretion Discs

    Get PDF
    We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr spacetime. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish among different models of the central source.Comment: 9 pages, latex, 13 figures, 3 Tables; accepted for publication in MNRA

    The relativistic shift of narrow spectral features from black-hole accretion discs

    Full text link
    Transient spectral features have been discovered in the X-ray spectra of Active Galactic Nuclei, mostly in the 5--7 keV energy range. Several interpretations were proposed for the origin of these features. We examined a model of Doppler boosted blue horns of the iron line originating from a spot in a black hole accretion disc, taking into account different approximations of general relativistic light rays and the resulting shift of energy of photons. We provide a practical formula for the blue horn energy of an intrinsically narrow line and assess its accuracy by comparing the approximation against an exact value, predicted under the assumption of a planar accretion disc. The most accurate approximation provides excellent agreement with the spot orbital radius down to the marginally stable orbit of a non-rotating black hole.Comment: Accepted for publication in A&A; 8 pages, 5 figure

    The estimation of black-hole masses in distant radio galaxies

    Full text link
    We have estimated the masses of the central supermassive black holes of 2442 radio galaxies froma catalog compiled using data from the NED, SDSS, and CATS databases. Mass estimates based on optical photometry and radio data are compared. Relationships between the mass of the central black hole MpbhM_p^{bh} and the redshift zpz_p are constructed for both wavelength ranges. The distribution of the galaxies in these diagrams and systematic effects influencing estimation of the black-hole parameters are discussed. Upperenvelope cubic regression fits are obtained using the maximum estimates of the black-hole masses. The optical and radio upper envelopes show similar behavior, and have very similar peaks in position, zp1.9z_p \simeq 1.9, and amplitude, logMpbh\log M_p^{bh} = 9.4. This is consistent with a model in which the growth of the supermassive black holes is self-regulating, with this redshift corresponding to the epoch when the accretion-flow phase begins to end and the nuclear activity falls off.Comment: 8 pages, 6 figure

    The UV Properties of the Narrow Line Quasar I Zwicky 1

    Get PDF
    I Zw 1 is the prototype narrow line quasar. We report here the results of our study of the UV emission of I Zw 1 using a high S/N (50-120) spectrum obtained with the HST FOS. The following main new results are obtained: 1. The Mg II and Al III doublets are partially/fully resolved. The measured doublet ratios verify theoretical predictions that the lines are thermalized in the BLR. 2. A weak associated UV absorption system is detected in N~V, and possibly also in C IV and Lya, suggesting an outflow with a velocity of 1870 km/s and velocity dispersion <300 km/s. 3. Lines from ions of increasing ionization level show increasing excess blue wing flux, and an increasing line peak velocity shift, reaching a maximum blueshift of about 2000 km/s for He II 1640. This may indicate an out-flowing component in the BLR, where the ionization level increases with velocity, and which is visible only in the approaching direction. The highest velocity part of this outflow may produce the associated UV absorption system. 4. The small C III] 1909 EW, and the small C III] 1909/Lya and C III] 1909/Si III] 1892 flux ratios indicate a typical BLR density of 10^11, i.e. about an order of magnitude larger than implied by C III] 1909 in most quasars. A BLR component of a higher density is implied by the EW and doublet ratio of the Al III 1857 doublet. 5. Prominent Fe II UV 191 emission is seen, together with weaker line emission at 1294 and 1871 A. These three features have been proposed as evidence for significant Lya pumping of the 8-10 eV levels of Fe II. 6. Significant Fe III emission is present. The Fe III UV 34 and UV 48 multiplets are clearly resolved, and Fe III UV 1, UV 47, UV 50, and UV 68 may also be present. (Shortened version)Comment: 28 pages, 1 table and 7 figures included. Uses aas2pp4.sty. Scheduled for the Astrophysical Journal November 10, 1997 issue, Vol. 48
    corecore