406 research outputs found

    Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector

    Get PDF
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"

    Possible background reductions in double beta decay experiments

    Full text link
    The background induced by radioactive impurities of 208Tl^{208}\rm Tl and 214Bi^{214}\rm Bi in the source of the double beta experiment NEMO-3 has been investigated. New methods of data analysis which decrease the background from the above mentioned contamination are identified. The techniques can also be applied to other double beta decay experiments capable of measuring independently the energies of the two electrons.Comment: 15 pages, 13 figures, accepted in the Nuclear Instruments and Methods

    Measurement of double beta decay of ¹⁰⁰Mo to excited states in the NEMO 3 experiment

    Get PDF
    The double beta decay of ¹⁰⁰Mo to the 0_{1}^{+} and 2_{1}^{+} excited states of ¹⁰⁰Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of ¹⁰⁰Mo to the excited 0_{1}^{+} state is measured to be T_{1/2}^{2v} = [5.7_{-0.9}^{+1.3} (stat.) ± 0.8 (syst.)] x 10²⁰ y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0_{1}^{+} state has been found. The corresponding half-life limit is T_{1/2}^{0v} (0⁺→0_{1}^{+}) > 8.9 x 10²² y (at 90% C.L.). The search for the double beta decay to the 2_{1}^{+} excited state has allowed the determination of limits on the half-life for the two neutrino mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.1 x 10²¹ y (at 90% C.L.) and for the neutrinoless mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.6 x 10²³ y (at 90% C.L.)

    Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector

    Full text link
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T_{1/2} > 3.1 10^{23} y, 90% CL) and Se-82 (T_{1/2} > 1.4 10^{23} y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: m < (0.8-1.2) eV and m < (1.5-3.1) eV, respectively. Also the limits on double-beta decay with Majoron emission are: T_{1/2} > 1.4 10^{22} y (90% CL) for Mo-100 and T_{1/2}> 1.2 10^{22} y (90%CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are g < (0.5-0.9) 10^{-4} and < (0.7-1.6) 10^{-4}. Two-neutrino 2b-decay half-lives have been measured with a high accuracy, T_{1/2} Mo-100 = [7.68 +- 0.02(stat) +- 0.54(syst) ] 10^{18} y and T_{1/2} Se-82 = [10.3 +- 0.3(stat) +- 0.7(syst) ] 10^{19} y.Comment: 5 pages, 4 figure

    Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors

    Full text link
    Large mass ice/water Cherenkov experiments, optimized to detect low energy (1-20 GeV) atmospheric neutrinos, have the potential to discriminate between normal and inverted neutrino mass hierarchies. The sensitivity depends on several model and detector parameters, such as the neutrino flux profile and normalization, the Earth density profile, the oscillation parameter uncertainties, and the detector effective mass and resolution. A proper evaluation of the mass hierarchy discrimination power requires a robust statistical approach. In this work, the Toy Monte Carlo, based on an extended unbinned likelihood ratio test statistic, was used. The effect of each model and detector parameter, as well as the required detector exposure, was then studied. While uncertainties on the Earth density and atmospheric neutrino flux profiles were found to have a minor impact on the mass hierarchy discrimination, the flux normalization, as well as some of the oscillation parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP}) uncertainties and correlations resulted critical. Finally, the minimum required detector exposure, the optimization of the low energy threshold, and the detector resolutions were also investigated.Comment: 23 pages, 16 figure

    Solar neutrino detection in a large volume double-phase liquid argon experiment

    Full text link
    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the "neutrino floor" (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.Comment: 21 pages, 7 figures, 6 table

    Technical design and performance of the NEMO3 detector

    Full text link
    The development of the NEMO3 detector, which is now running in the Frejus Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun more than ten years ago. The NEMO3 detector uses a tracking-calorimeter technique in order to investigate double beta decay processes for several isotopes. The technical description of the detector is followed by the presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author: Corinne Augier ([email protected]

    Limits on different Majoron decay modes of 100^{100}Mo and 82^{82}Se for neutrinoless double beta decays in the NEMO-3 experiment

    Full text link
    The NEMO-3 tracking detector is located in the Fr\'ejus Underground Laboratory. It was designed to study double beta decay in a number of different isotopes. Presented here are the experimental half-life limits on the double beta decay process for the isotopes 100^{100}Mo and 82^{82}Se for different Majoron emission modes and limits on the effective neutrino-Majoron coupling constants. In particular, new limits on "ordinary" Majoron (spectral index 1) decay of 100^{100}Mo (T1/2>2.71022T_{1/2} > 2.7\cdot10^{22} y) and 82^{82}Se (T1/2>1.51022T_{1/2} > 1.5\cdot10^{22} y) have been obtained. Corresponding bounds on the Majoron-neutrino coupling constant are <(0.41.9)104 < (0.4-1.9) \cdot 10^{-4} and <(0.661.7)104< (0.66-1.7) \cdot 10^{-4}.Comment: 23 pages includind 4 figures, to be published in Nuclear Physics

    Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

    Full text link
    The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).Comment: 23 pages, 7 figures, 4 tables, submitted to Nucl. Phy
    corecore