3,930 research outputs found

    A rotor-mounted digital instrumentation system for helicopter blade flight research measurements

    Get PDF
    A rotor mounted flight instrumentation system developed for helicopter rotor blade research is described. The system utilizes high speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested on an AH-1G helicopter. The system employs microelectronic pulse code modulation (PCM) multiplexer digitizer stations located remotely on the blade and in a hub mounted metal canister. As many as 25 sensors can be remotely digitized by a 2.5 mm thick electronics package mounted on the blade near the tip to reduce blade wiring. The electronics contained in the canister digitizes up to 16 sensors, formats these data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data are transmitted over an RF link to the ground for real time monitoring and to the helicopter fuselage for tape recording. The complete system is powered by batteries located in the canister and requires no slip rings on the rotor shaft

    Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study

    Get PDF
    This is the final version of the article. Available from American Geophysical Union via the DOI in this record.Using a global climate model (Hadley Centre Global Environment Model version 2-Carbon Cycle Stratosphere ) with a well-resolved stratosphere, we test the sensitivity of volcanic aerosol plume dispersion to meteorological conditions by simulating 1 day Mount Pinatubo-like eruptions on 10 consecutive days. The dispersion of the volcanic aerosol is found to be highly sensitive to the ambient meteorology for low-altitude eruptions (16–18 km), with this variability related to anomalous anticyclonic activity along the subtropical jet, which affects the permeability of the tropical pipe and controls the amount of aerosol that is retained by the tropical reservoir. Conversely, a high-altitude eruption scenario (19–29 km) exhibits low meteorological variability. Overcoming day-to-day meteorological variability by spreading the emission over 10 days is shown to produce insufficient radiative heating to loft the aerosol into the stratospheric tropical aerosol reservoir for the low eruption scenario. This results in limited penetration of aerosol into the southern hemisphere (SH) in contrast to the SH transport observed after the Pinatubo eruption. Our results have direct implications for the accurate simulation of past/future volcanic eruptions and volcanically forced climate changes, such as Intertropical Convergence Zone displacement.A.C.J. was funded by a NERC/CASE PhD studentship (ref. 580 009 138, with CASE partner being the Met Office); J.M.H. and A.J. were supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). The authors would like to thank Larry Thomason for supplying the SAGE II data. Data are freely available by contacting A.C.J

    Space Velocities of L- and T-type Dwarfs

    Get PDF
    (Abridged) We have obtained radial velocities of a sample of 18 ultracool dwarfs (M6.5-T8) using high-resolution, near-infrared spectra obtained with NIRSPEC and the Keck II telescope. We have confirmed that the radial velocity of Gl 570 D is coincident with that of the K-type primary star Gl 570 A, thus providing additional support for their true companionship. The presence of planetary-mass companions around 2MASS J05591914-1404488 (T4.5V) has been analyzed using five NIRSPEC radial velocity measurements obtained over a period of 4.37 yr. We have computed UVW space motions for a total of 21 L and T dwarfs within 20 pc of the Sun. This population shows UVW velocities that nicely overlap the typical kinematics of solar to M-type stars within the same spatial volume. However, the mean Galactic (44.2 km/s) and tangential (36.5 km/s) velocities of the L and T dwarfs appear to be smaller than those of G to M stars. A significant fraction (~40%) of the L and T dwarfs lies near the Hyades moving group (0.4-2 Gyr), which contrasts with the 10-12% found for earlier-type stellar neighbors. Additionally, the distributions of all three UVW components (sigma_{UVW} = 30.2, 16.5, 15.8 km/s) and the distributions of the total Galactic (sigma_{v_tot} = 19.1 km/s) and tangential (sigma_{v_t} = 17.6 km/s) velocities derived for the L and T dwarf sample are narrower than those measured for nearby G, K, and M-type stars, but similar to the dispersions obtained for F stars. This suggests that, in the solar neighborhood, the L- and T-type ultracool dwarfs in our sample (including brown dwarfs) is kinematically younger than solar-type to early M stars with likely ages in the interval 0.5-4 Gyr.Comment: Accepted for publication in Ap

    Evolution of the Velocity Ellipsoids in the Thin Disk of the Galaxy and the Radial Migration of Stars

    Full text link
    Data from the revised Geneva--Copenhagen catalog are used to study the influence of radial migration of stars on the age dependences of parameters of the velocity ellipsoids for nearby stars in the thin disk of the Galaxy, assuming that the mean radii of the stellar orbits remain constant. It is demonstrated that precisely the radial migration of stars, together with the negative metallicity gradient in the thin disk,are responsible for the observed negative correlation between the metallicities and angular momenta of nearby stars, while the angular momenta of stars that were born at the same Galactocentric distances do not depend on either age or metallicity. (abridged)Comment: Astronomy Reports, Vol. 86 No. 9, P.1117-1126 (2009

    Chemical composition of the Taurus-Auriga association

    Full text link
    The Taurus-Auriga association is perhaps the most famous prototype of a low-mass star forming region, surveyed at almost all wavelengths. Unfortunately, like several other young clusters/associations, this T association lacks an extensive abundance analysis determination. We present a high-resolution spectroscopic study of seven low-mass members of Taurus-Auriga, including both weak-lined and classical T Tauri stars designed to help robustly determine their metallicity. After correcting for spectral veiling, we performed equivalent width and spectral synthesis analyses using the GAIA set of model atmospheres and the 2002 version of the code MOOG. We find a solar metallicity, obtaining a mean value of [Fe/H]=0.01±-0.01\pm0.05. The α\alpha-element Si and the Fe-peak one Ni confirm a solar composition. Our work shows that the dispersion among members is well within the observational errors at variance with previous claims. As in other star forming regions, no metal-rich members are found, reinforcing the idea that old planet-host stars form in the inner part of the Galactic disc and subsequently migrate.Comment: In press on A\&

    Relationship between the Velocity Ellipsoids of Galactic-Disk Stars and their Ages and Metallicities

    Full text link
    The dependences of the velocity ellipsoids of F-G stars of the thin disk of the Galaxy on their ages and metallicities are analyzed based on the new version of the Geneva-Copenhagen Catalog. The age dependences of the major, middle, and minor axes of the ellipsoids, and also of the dispersion of the total residual veltocity, obey power laws with indices 0.25,0.29,0.32, and 0.27 (with uncertainties \pm 0.02). Due to the presence of thick-disk objects, the analogous indices for all nearby stars are about a factor of 1.5 larger. Attempts to explain such values are usually based on modeling relaxation processes in the Galactic disk. With increasing age, the velocity ellipsoid increases in size and becomes appreciably more spherical, turns toward the direction of the Galactic center, and loses angular momentum. The shape of the velocity ellipsoid remains far from equilibrium. With increasing metallicity, the velocity ellipsoid for stars of mixed age increases in size, displays a weak tendency to become more spherical, and turns toward the direction of the Galactic center (with these changes occurring substantially more rapidly in the transition through the metallicity [Fe/H]= -0.25). Thus, the ellipsoid changes similarly to the way it does with age; however, with decreasing metallicity, the rotational velocity about the Galactic center monotonically increases, rather than decreases(!). Moreover, the power-law indices for the age dependences of the axes depend on the metallicity, and display a maximum near [Fe/H]=-0.1. The age dependences of all the velocity-ellipsoid parameters for stars with equal metallicity are roughly the same. It is proposed that the appearance of a metallicity dependence of the velocity ellipsoids for thin-disk stars is most likely due to the radial migration of stars.Comment: 15 pages, 6 figures, accepted 2009, Astronomy Reports, Vol. 53 No. 9, P.785-80

    Estimating the effects of Bose-Einstein correlations on the W mass measurement at LEP2

    Full text link
    The influence of Bose-Einstein correlations on the determination of the mass of the W boson in e+e- -> WW -> 4jet events at LEP2 energies is studied, using a global event weighting method. We find that it is possible to keep the systematic error on the W mass from this source below 20 MeV, if suitable precautions are taken in the experimental analysis.Comment: 12 pages including 3 .eps figures. Paper revised to correct for a software bug which overestimated heavy quark contributio

    Galaxia: a code to generate a synthetic survey of the Milky Way

    Full text link
    We present here a fast code for creating a synthetic survey of the Milky Way. Given one or more color-magnitude bounds, a survey size and geometry, the code returns a catalog of stars in accordance with a given model of the Milky Way. The model can be specified by a set of density distributions or as an N-body realization. We provide fast and efficient algorithms for sampling both types of models. As compared to earlier sampling schemes which generate stars at specified locations along a line of sight, our scheme can generate a continuous and smooth distribution of stars over any given volume. The code is quite general and flexible and can accept input in the form of a star formation rate, age metallicity relation, age velocity dispersion relation and analytic density distribution functions. Theoretical isochrones are then used to generate a catalog of stars and support is available for a wide range of photometric bands. As a concrete example we implement the Besancon Milky Way model for the disc. For the stellar halo we employ the simulated stellar halo N-body models of Bullock & Johnston (2005). In order to sample N-body models, we present a scheme that disperses the stars spawned by an N-body particle, in such a way that the phase space density of the spawned stars is consistent with that of the N-body particles. The code is ideally suited to generating synthetic data sets that mimic near future wide area surveys such as GAIA, LSST and HERMES. As an application we study the prospect of identifying structures in the stellar halo with a simulated GAIA survey. We plan to make the code publicly available at http://galaxia.sourceforge.net.Comment: Accepted for publication in Ap

    Metallicities of Planet Hosting Stars: A Sample of Giants and Subgiants

    Full text link
    This work presents a homogeneous derivation of atmospheric parameters and iron abundances for a sample of giant and subgiant stars which host giant planets, as well as a control sample of subgiant stars not known to host giant planets. The analysis is done using the same technique as for our previous analysis of a large sample of planet-hosting and control sample dwarf stars. A comparison between the distributions of [Fe/H] in planet-hosting main-sequence stars, subgiants, and giants within these samples finds that the main-sequence stars and subgiants have the same mean metallicity of \simeq +0.11 dex, while the giant sample is typically more metal poor, having an average metallicity of = -0.06 dex. The fact that the subgiants have the same average metallicities as the dwarfs indicates that significant accretion of solid metal-rich material onto the planet-hosting stars has not taken place, as such material would be diluted in the evolution from dwarf to subgiant. The lower metallicity found for the planet-hosting giant stars in comparison with the planet-hosting dwarfs and subgiants is interpreted as being related to the underlying stellar mass, with giants having larger masses and thus, on average larger-mass protoplanetary disks. In core accretion models of planet formation, larger disk masses can contain the critical amount of metals necessary to form giant planets even at lower metallicities.Comment: 38 pages, 7 figures, 4 tables, accepted for publication in Ap

    The ATLAS SCT grounding and shielding concept and implementation

    Get PDF
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper
    corecore