The dependences of the velocity ellipsoids of F-G stars of the thin disk of
the Galaxy on their ages and metallicities are analyzed based on the new
version of the Geneva-Copenhagen Catalog. The age dependences of the major,
middle, and minor axes of the ellipsoids, and also of the dispersion of the
total residual veltocity, obey power laws with indices 0.25,0.29,0.32, and 0.27
(with uncertainties \pm 0.02). Due to the presence of thick-disk objects, the
analogous indices for all nearby stars are about a factor of 1.5 larger.
Attempts to explain such values are usually based on modeling relaxation
processes in the Galactic disk. With increasing age, the velocity ellipsoid
increases in size and becomes appreciably more spherical, turns toward the
direction of the Galactic center, and loses angular momentum. The shape of the
velocity ellipsoid remains far from equilibrium. With increasing metallicity,
the velocity ellipsoid for stars of mixed age increases in size, displays a
weak tendency to become more spherical, and turns toward the direction of the
Galactic center (with these changes occurring substantially more rapidly in the
transition through the metallicity [Fe/H]= -0.25). Thus, the ellipsoid changes
similarly to the way it does with age; however, with decreasing metallicity,
the rotational velocity about the Galactic center monotonically increases,
rather than decreases(!). Moreover, the power-law indices for the age
dependences of the axes depend on the metallicity, and display a maximum near
[Fe/H]=-0.1. The age dependences of all the velocity-ellipsoid parameters for
stars with equal metallicity are roughly the same. It is proposed that the
appearance of a metallicity dependence of the velocity ellipsoids for thin-disk
stars is most likely due to the radial migration of stars.Comment: 15 pages, 6 figures, accepted 2009, Astronomy Reports, Vol. 53 No. 9,
P.785-80