1,003 research outputs found
Superconducting diamagnetic fluctuations in ropes of carbon nanotubes
We report low-temperature magnetisation measurements on a large number of
purified ropes of single wall carbon nanotubes. In spite of a large
superparamagnetic contribution due to the small ferromagnetic catalytical
particles still present in the sample, at low temperature () and low
magnetic field (), a diamagnetic signal is detectable. This low
temperature diamagnetism can be interpreted as the Meissner effect in ropes of
carbon nanotubes which have previously been shown to exhibit superconductivity
from transport measurements.Comment: 10 pages 3 figure
Alteration of superconductivity of suspended carbon nanotubes by deposition of organic molecules
We have altered the superconductivity of a suspended rope of single walled
carbon nanotubes, by coating it with organic polymers. Upon coating, the normal
state resistance of the rope changes by less than 20 percent. But
superconductivity, which on the bare rope shows up as a substantial resistance
decrease below 300 mK, is gradualy suppressed. We correlate this to the
suppression of radial breathing modes, measured with Raman Spectroscopy on
suspended Single and Double-walled carbon nanotubes. This points to the
breathing phonon modes as being responsible for superconductivity in carbon
nanotubes
Remarks on the tight-binding model of graphene
We address a simple but fundamental issue arising in the study of graphene,
as well as of other systems that have a crystalline structure with more than
one atom per unit cell. For these systems, the choice of the tight-binding
basis is not unique. For monolayer graphene two bases are widely used in the
literature. While the expectation values of operators describing physical
quantities should be independent of basis, the form of the operators may depend
on the basis, especially in the presence of disorder or of an applied magnetic
field. Using the inappropriate form of certain operators may lead to erroneous
physical predictions. We discuss the two bases used to describe monolayer
graphene, as well as the form of the most commonly used operators in the two
bases. We repeat our analysis for the case of bilayer graphene.Comment: 15 pages, 4 figure
Ferromagnetic Quantum Critical Point in CePdP with Pd Ni Substitution
An investigation of the structural, thermodynamic, and electronic transport
properties of the isoelectronic chemical substitution series
Ce(PdNi)P is reported, where a possible ferromagnetic
quantum critical point is uncovered in the temperature - concentration ()
phase diagram. This behavior results from the simultaneous contraction of the
unit cell volume, which tunes the relative strengths of the Kondo and RKKY
interactions, and the introduction of disorder through alloying. Near the
critical region at 0.7, the rate of contraction of the
unit cell volume strengthens, indicating that the cerium -valence crosses
over from trivalent to a non-integer value. Consistent with this picture, x-ray
absorption spectroscopy measurements reveal that while CePdP has a
purely trivalent cerium -state, CeNiP has a small ( 10 \%)
tetravalent contribution. In a broad region around , there is a
breakdown of Fermi liquid temperature dependences, signaling the influence of
quantum critical fluctuations and disorder effects. Measurements of clean
CePdP furthermore show that applied pressure has a similar initial
effect to alloying on the ferromagnetic order. From these results,
CePdP emerges as a keystone system to test theories such as the
Belitz-Kirkpatrick-Vojta model for ferromagnetic quantum criticality, where
distinct behaviors are expected in the dirty and clean limits.Comment: 9 pages, 8 figure
On postglacial sea level—III. Incorporating sediment redistribution
We derive a generalized theory for gravitationally self-consistent, static sea level variations on earth models of arbitrary complexity that takes into account the redistribution of sediments. The theory is an extension of previous work that incorporated, into the governing equations, shoreline migration due to local sea level variations and changes in the geometry of grounded, marine-based ice. In addition, we use viscoelastic Love number theory to present a version of the new theory valid for spherically symmetric earth models. The Love number theory accounts for the gravitational, deformational and rotational effects of the sediment redistribution. As a first, illustrative application of the new theory, we compute the perturbation in sea level driven by an idealized pulse of sediment transport into the Gulf of Mexico. We demonstrate that incorporating a gravitationally self-consistent water load in this case significantly improves the accuracy of sea level predictions relative to previous simplified treatments of the sediment redistribution
Pinning and switching of magnetic moments in bilayer graphene
We examine the magnetic properties of the localized states induced by lattice
vacancies in bilayer graphene with an unrestricted Hartree-Fock calculation. We
show that with realistic values of the parameters and for experimentally
accessible gate voltages we can have a magnetic switching between an
unpolarized and a fully polarized system.Comment: 9 pages, 4 figure
The key physical parameters governing frictional dissipation in a precipitating atmosphere
Precipitation generates small-scale turbulent air flows the energy of which
ultimately dissipates to heat. The power of this process has previously been
estimated to be around 2-4 W m-2 in the tropics: a value comparable in
magnitude to the dynamic power of the global circulation. Here we suggest that
this previous power estimate is approximately double the true figure. Our
result reflects a revised evaluation of the mean precipitation path length Hp.
We investigate the dependence of Hp on surface temperature,relative
humidity,temperature lapse rate and degree of condensation in the ascending
air. We find that the degree of condensation,defined as the relative change of
the saturated water vapor mixing ratio in the region of condensation, is a
major factor determining Hp. We estimate from theory that the mean large-scale
rate of frictional dissipation associated with total precipitation in the
tropics lies between 1 and 2 W m-2 and show that our estimate is supported by
empirical evidence. We show that under terrestrial conditions frictional
dissipation constitutes a minor fraction of the dynamic power of
condensation-induced atmospheric circulation,which is estimated to be at least
2.5 times larger. However,because Hp increases with surface temperature Ts, the
rate of frictional dissipation would exceed that of condensation-induced
dynamics, and thus block major circulation, at Ts >~320 K in a moist adiabatic
atmosphere.Comment: 12 pp, 2 figure
Long-lived Andreev states as evidence for protected hinge modes in a bismuth nanoring Josephson junction
Second-order topological insulators are characterized by helical, non-spin-degenerate one-dimensional states running along opposite crystal hinges with no backscattering. Injecting superconducting pairs therefore entails splitting Cooper pairs into two families of helical Andreev states of opposite helicity, one at each hinge. Here we provide evidence for such separation via the measurement and analysis of the switching supercurrent statistics of a crystalline nanoring of bismuth. Using a phenomenological model of two helical Andreev hinge modes, we find that pairs relax at a rate comparable to individual quasiparticles, in contrast to the much faster pair relaxation of non-topological systems. This constitutes a unique telltale sign of the spatial separation of topological helical hinges
- …