38 research outputs found

    Skinfold thickness affects the isometric knee extension torque evoked by neuromuscular electrical stimulation

    Get PDF
    Background: Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. Objective: To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. Method: First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). Results: NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). Conclusion: These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies

    Intranasal oxygen reverses hypoxaemia in immobilised free-ranging capybaras (Hydrochoerus hydrochaeris)

    Get PDF
    Capybara (Hydrochoerus hydrochaeris) is the main host of tick-borne pathogens causing Brazilian spotted fever; therefore, controlling its population is essential, and this may require chemical restraint. We assessed the impact of chemical restraint protocols on the partial pressure of arterial oxygen (PaO2) and other blood variables in 36 capybaras and the effect of different flows of nasal oxygen (O2) supplementation. The capybaras were hand-injected with dexmedetomidine (5 μg/kg) and midazolam (0.1 mg/kg) and butorphanol (0.2 mg/kg) (DMB, n = 18) or methadone (0.1 mg/kg) (DMM, n = 18). One-third of the animals were maintained in ambient air throughout the procedure, and one-third were administered intranasal 2 L/min O2 after 30 min whereas the other third were administered 5 L/min O2. Arterial blood gases, acid-base status, and electrolytes were assessed 30 and 60 min after drug injection. The DMB and DMM groups did not vary based on any of the evaluated variables. All animals developed hypoxaemia (PaO2 44 [30; 73] mmHg, SaO2 81 [62; 93] %) 30 min before O2 supplementation. Intranasal O2 at 2 L/min improved PaO2 (63 [49; 97] mmHg and SaO2 [92 [85; 98] %), but 9 of 12 capybaras remained hypoxaemic. A higher O2 flow of 5 L/min was efficient in treating hypoxaemia (PaO2 188 [146; 414] mmHg, SaO2 100 [99; 100] %) in all the 12 animals that received it. Both drug protocols induced hypoxaemia, which could be treated with intranasal oxygen supplementation

    Physiological and analgesic effects of continuous-rate infusion of morphine, butorphanol, tramadol or methadone in horses with lipopolysaccharide (LPS)-induced carpal synovitis

    Get PDF
    Abstract\ud \ud Background\ud Continuous-rate infusion (CRI) of drugs results in more stable plasma drug concentrations than administration of intermittent boluses, thus providing greater stability of physiological parameters. The aim of this study was to evaluate the physiologic and analgesic effects of the administration of morphine, butorphanol, tramadol or methadone by CRI in horses with induced synovitis of the radiocarpal joint.\ud \ud \ud Results\ud Increased values of cardiorespiratory parameters and body temperature were observed in all groups after initiation of opioid administration, and these increases were sustained throughout the CRI period. Morphine, butorphanol and methadone each caused a reduction in gut sounds, and this effect was greatest in animals that received morphine. Administration of morphine or methadone reduced the degree of lameness after the end of intravenous infusion. Administration of tramadol did not alter the degree of lameness in the animals.\ud \ud \ud Conclusions\ud CRI of morphine or methadone, but not butorphanol or tramadol, provided analgesia in horses with carpal synovitis. All of these opioids increased cardiovascular and respiratory parameters and reduced gut sounds during CRI.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells

    Get PDF
    The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells

    RNASeq analysis of differentiated keratinocytes reveals a massive response to late events during human papillomavirus type 16 infection, including loss of epithelial barrier function.

    Get PDF
    The human papillomavirus (HPV) replication cycle is tightly linked to epithelial cell differentiation. To examine HPV-associated changes in the keratinocyte transcriptome, RNAs isolated from undifferentiated and differentiated cell populations of normal, spontaneously immortalised, keratinocytes (NIKS), and NIKS stably transfected with HPV16 episomal genomes (NIKS16), were compared using RNASeq. HPV16 infection altered expression of 2862 cellular genes. Next, to elucidate the role of keratinocyte gene expression in late events during the viral life cycle, RNASeq was carried out on triplicate differentiated populations of NIKS (uninfected) and NIKS16 (infected). Of the top 966 genes altered (>log2 = 1.8, 3.5-fold change) 670 genes were downregulated and 296 genes were up-regulated. HPV down-regulated many genes involved in epithelial barrier function that involves structural resistance to the environment and immunity to infectious agents. For example, HPV infection repressed expression of the differentiated keratinocyte-specific pattern recognition receptor TLR7, the Langerhans cell chemoattractant, CCL20, and proinflammatory cytokines, IL1A and IL1B. However, IRF1, IFNκ and viral restriction factors (IFIT1, 2, 3, 5, OASL, CD74, RTP4) were up-regulated. HPV infection abrogated gene expression associated with the physical epithelial barrier, including keratinocyte cytoskeleton, intercellular junctions and cell adhesion. qPCR and western blotting confirmed changes in expression of seven of the most significantly altered mRNAs. Expression of three genes showed statistically significant changes during cervical disease progression in clinical samples. Taken together, the data indicate that HPV infection manipulates the differentiating keratinocyte transcriptome to create an environment conducive to productive viral replication and egress.IMPORTANCE Human papillomavirus (HPV) genome amplification and capsid formation takes place in differentiated keratinocytes. The viral life cycle is intimately associated with host cell differentiation. Deep sequencing (RNASeq) of RNA from undifferentiated and differentiated uninfected and HPV16-positive keratinocytes showed that almost 3000 genes were differentially expressed in keratinocyte due to HPV16 infection. Strikingly, the epithelial barrier function of differentiated keratinocytes, comprising keratinocyte immune function and cellular structure, was found to be disrupted. These data provide new insights into virus-host interaction crucial for production of infectious virus and reveal that HPV infection remodels keratinocytes for completion of the virus replication cycle

    PHYSICAL ACTIVITY LEVEL DOES NOT INFLUENCE THE NEUROMUSCULAR FATIGUE IN ADULTS

    Full text link
    Introduction: Fatigue during voluntary muscle contractions is a complex and multifactorial phenomenon associated with central changes and adaptations of the neuromuscular system. Objective: The purpose of this study was to evaluate the fatigue induced by intermittent successive extension of the knee between active and inactive university students. Method: Twenty healthy men (≥18 years), voluntarily participated in this study. To determine the maximum voluntary isometric contraction (MVIC) of the knee extensors muscle group, three sets of isometric contractions of knee extension were performed for five seconds with five minutes of rest between sets. The fatigue protocol consisted of 10 sets of 10 maximal concentric contractions of the extensor on the right knee, performed at 75% of MVIC with an interval of 45". Results: Significant reductions were observed (p<0.01), both in isometric strength (-34±4%) and the dynamic strength (-40 ± 3%). In addition, the slope of relationship strength x repetition was -0.79±0.07 Nm/repetitions and the magnitude of the effect reached -8.90. Conclusion: The protocol was useful to induce peripheral fatigue, although muscle strength is greater in the active group. In both isometric and dynamic action, muscle fatigue did not differ between groups

    BALB/c Mice Infected with Antimony Treatment Refractory Isolate of Leishmania braziliensis Present Severe Lesions due to IL-4 Production

    Get PDF
    Leishmaniasis is a neglected disease that affects more than 12 million people worldwide. In Brazil, the cutaneous disease is more prevalent with about 28,000 new cases reported each year, and L. braziliensis is the main causative agent. The interesting data about the infection with this parasite is the wide variety of clinical manifestations that ranges from single ulcerated lesions to mucocutaneous and disseminated disease. However, experimental models to study the infection with this parasite are difficult to develop due to high resistance of most mouse strains to the infection, and the mechanisms underlying the distinct manifestations remain poorly understood. Here, the authors use a mouse experimental model of infection with different L. braziliensis isolates, known to induce diseases with distinct severity in the human hosts, to elucidate immune mechanisms that may be involved in the different manifestations. They showed that distinct parasite isolates may modulate host response, and increased IL-4 production and Arg I expression was related to more severe disease, resulting in longer length of disease with larger lesions and reduced parasite clearance. These findings may be useful in the identification of immunological targets to control L. braziliensis infection and potential clinical markers of disease progression

    Tegumentary leishmaniasis and coinfections other than HIV

    Get PDF
    <div><p>Background</p><p>Tegumentary leishmaniasis (TL) is a disease of skin and/or mucosal tissues caused by <i>Leishmania</i> parasites. TL patients may concurrently carry other pathogens, which may influence the clinical outcome of TL.</p><p>Methodology and principal findings</p><p>This review focuses on the frequency of TL coinfections in human populations, interactions between <i>Leishmania</i> and other pathogens in animal models and human subjects, and implications of TL coinfections for clinical practice. For the purpose of this review, TL is defined as all forms of cutaneous (localised, disseminated, or diffuse) and mucocutaneous leishmaniasis. Human immunodeficiency virus (HIV) coinfection, superinfection with skin bacteria, and skin manifestations of visceral leishmaniasis are not included. We searched MEDLINE and other databases and included 73 records: 21 experimental studies in animals and 52 studies about human subjects (mainly cross-sectional and case studies). Several reports describe the frequency of <i>Trypanosoma cruzi</i> coinfection in TL patients in Argentina (about 41%) and the frequency of helminthiasis in TL patients in Brazil (15% to 88%). Different hypotheses have been explored about mechanisms of interaction between different microorganisms, but no clear answers emerge. Such interactions may involve innate immunity coupled with regulatory networks that affect quality and quantity of acquired immune responses. Diagnostic problems may occur when concurrent infections cause similar lesions (e.g., TL and leprosy), when different pathogens are present in the same lesions (e.g., <i>Leishmania</i> and <i>Sporothrix schenckii</i>), or when similarities between phylogenetically close pathogens affect accuracy of diagnostic tests (e.g., serology for leishmaniasis and Chagas disease). Some coinfections (e.g., helminthiasis) appear to reduce the effectiveness of antileishmanial treatment, and drug combinations may cause cumulative adverse effects.</p><p>Conclusions and significance</p><p>In patients with TL, coinfection is frequent, it can lead to diagnostic errors and delays, and it can influence the effectiveness and safety of treatment. More research is needed to unravel how coinfections interfere with the pathogenesis of TL.</p></div
    corecore