361 research outputs found

    Pressure-Induced Rotational Symmetry Breaking in URu2_2Si2_2

    Full text link
    Phase transitions and symmetry are intimately linked. Melting of ice, for example, restores translation invariance. The mysterious hidden order (HO) phase of URu2_2Si2_2 has, despite relentless research efforts, kept its symmetry breaking element intangible. Here we present a high-resolution x-ray diffraction study of the URu2_2Si2_2 crystal structure as a function of hydrostatic pressure. Below a critical pressure threshold pc3p_c\approx3 kbar, no tetragonal lattice symmetry breaking is observed even below the HO transition THO=17.5T_{HO}=17.5 K. For p>pcp>p_c, however, a pressure-induced rotational symmetry breaking is identified with an onset temperatures TOR100T_{OR}\sim 100 K. The emergence of an orthorhombic phase is found and discussed in terms of an electronic nematic order that appears unrelated to the HO, but with possible relevance for the pressure-induced antiferromagnetic (AF) phase. Existing theories describe the HO and AF phases through an adiabatic continuity of a complex order parameter. Since none of these theories predicts a pressure-induced nematic order, our finding adds an additional symmetry breaking element to this long-standing problem.Comment: 6 pages, 4 figures and supplemental material

    Prospects for dendroanatomy in paleoclimatology - a case study on Picea engelmannii from the Canadian Rockies

    Get PDF
    Funding: This research was supported by the Svenska Forskningsrådet Formas (grant no. 2019-01482), the National Science Foundation (grant no. 1502150), the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (grant no. 200021_182398), and the Grantová Agentura České Republiky (grant no. 20-22351Y).The continuous development of new proxies as well as a refinement of existing tools are key to advances in paleoclimate research and improvements in the accuracy of existing climate reconstructions. Herein, we build on recent methodological progress in dendroanatomy, the analyses of wood anatomical parameters in dated tree rings, and introduce the longest (1585-2014CE) dendroanatomical dataset currently developed for North America. We explore the potential of dendroanatomy of high-elevation Engelmann spruce (Picea engelmannii) as a proxy of past temperatures by measuring anatomical cell dimensions of 15 living trees from the Columbia Icefield area. X-ray maximum latewood density (MXD) and its blue intensity counterpart (MXBI) have previously been measured, allowing comparison between the different parameters. Our findings highlight anatomical MXD and maximum radial cell wall thickness as the two most promising wood anatomical proxy parameters for past temperatures, each explaining 46% and 49%, respectively, of detrended instrumental July-August maximum temperatures over the 1901-1994 period. While both parameters display comparable climatic imprinting at higher frequencies to X-ray derived MXD, the anatomical dataset distinguishes itself from its predecessors by providing the most temporally stable warm season temperature signal. Further studies, including samples from more diverse age cohorts and the adaptation of the regional curve standardization method, are needed to disentangle the ontogenetic and climatic components of long-term signals stored in the wood anatomical traits and to more comprehensively evaluate the potential contribution of this new dataset to paleoclimate research.Publisher PDFPeer reviewe

    Long-term soil water limitation and previous tree vigor drive local variability of drought-induced crown dieback in Fagus sylvatica.

    Get PDF
    Ongoing climate warming is increasing evapotranspiration, a process that reduces plant-available water and aggravates the impact of extreme droughts during the growing season. Such an exceptional hot drought occurred in Central Europe in 2018 and caused widespread defoliation in mid-summer in European beech (Fagus sylvatica L.) forests. Here, we recorded crown damage in 2021 in nine mature even-aged beech-dominated stands in northwestern Switzerland along a crown damage severity gradient (low, medium, high) and analyzed tree-ring widths of 21 mature trees per stand. We aimed at identifying predisposing factors responsible for differences in crown damage across and within stands such as tree growth characteristics (average growth rates and year-to-year variability) and site-level variables (mean canopy height, soil properties). We found that stand-level crown damage severity was strongly related to soil water availability, inferred from tree canopy height and plant available soil water storage capacity (AWC). Trees were shorter in drier stands, had higher year-to-year variability in radial growth, and showed higher growth sensitivity to moisture conditions of previous late summer than trees growing on soils with sufficient AWC, indicating that radial growth in these forests is principally limited by soil water availability. Within-stand variation of post-drought crown damage corresponded to growth rate and tree size (diameter at breast height, DBH), i.e., smaller and slower-growing trees that face more competition, were associated with increased crown damage after the 2018 drought. These findings point to tree vigor before the extreme 2018 drought (long-term relative growth rate) as an important driver of damage severity within and across stands. Our results suggest that European beech is less likely to be able to cope with future climate change-induced extreme droughts on shallow soils with limited water retention capacity

    Q-NET: a new scholarly network on quantitative wood anatomy

    Get PDF
    Quantitative wood anatomy (QWA) is a dynamic research approach of increasing interest that can provide answers to a wide range of research questions across different disciplines. However, the lack of common protocols and knowledge gaps hinder the realisation of the full potential of QWA. Therefore, we established the new community-based network Q-NET to provide an open interdisciplinary platform for exchange and research around QWA. Q-NET (https://qwa-net.com) combines an online knowledge and exchange base with virtual workshops. The first two workshops each attracted more than 125 participants from around the world, demonstrating the community’s interest in QWA and this virtual way of networking and collaborating. Indeed, virtual networks such as Q-NET could increase the inclusiveness, efficiency and sustainability of scientific collaboration while providing additional training and teaching opportunities for early career scientists, both of which complement in-person conferences and workshops.Plant sciencesNaturali

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Current Siberian heating is unprecedented during the past seven millennia

    Get PDF
    The Arctic is warming faster than any other region on Earth. Putting this rapid warming into perspective is challenging because instrumental records are often short or incomplete in polar regions and precisely-dated temperature proxies with high temporal resolution are largely lacking. Here, we provide this long-term perspective by reconstructing past summer temperature variability at Yamal Peninsula – a hotspot of recent warming – over the past 7638 years using annually resolved tree-ring records. We demonstrate that the recent anthropogenic warming interrupted a multi-millennial cooling trend. We find the industrial-era warming to be unprecedented in rate and to have elevated the summer temperature to levels above those reconstructed for the past seven millennia (in both 30-year mean and the frequency of extreme summers). This is undoubtedly of concern for the natural and human systems that are being impacted by climatic changes that lie outside the envelope of natural climatic variations for this region. © 2022, The Author(s).Natural Environment Research Council, NERC: NE/S015582/1; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNF: 183571; Russian Foundation for Basic Research, РФФИ: 18-05-00575; Russian Science Foundation, RSF: 182398, 21-14-00330R.M.H., S.G.S., A.Y.S., and L.A.G. received funding from the Russian Foundation for Basic Research (no. 18-05-00575). M.S., C.C., S.G., and P.F. received funding from the SNF Sinergia project CALDERA (no. 183571). V.V.K. acknowledges support from the Russian Science Foundation (no. 21-14-00330). G.vA. acknowledges support from the SNF project XELLCLIM (no. 182398). T.J.O. acknowledges support from UK NERC project GloSAT (no. NE/S015582/1)

    Catalic: Delegated PSI Cardinality with Applications to Contact Tracing

    Get PDF
    Private Set Intersection Cardinality (PSI-CA) allows two parties, each holding a set of items, to learn the size of the intersection of those sets without revealing any additional information. To the best of our knowledge, this work presents the first protocol that allows one of the parties to delegate PSI-CA computation to untrusted servers. At the heart of our delegated PSI-CA protocol is a new oblivious distributed key PRF (Odk-PRF) abstraction, which may be of independent interest. We explore in detail how to use our delegated PSI-CA protocol to perform privacy-preserving contact tracing. It has been estimated that a significant percentage of a given population would need to use a contact tracing app to stop a disease’s spread. Prior privacy-preserving contact tracing systems, however, impose heavy bandwidth or computational demands on client devices. These demands present an economic disincentive to participate for end users who may be billed per MB by their mobile data plan or for users who want to save battery life. We propose Catalic (ContAct TrAcing for LIghtweight Clients), a new contact tracing system that minimizes bandwidth cost and computation workload on client devices. By applying our new delegated PSI-CA protocol, Catalic shifts most of the client-side computation of contact tracing to untrusted servers, and potentially saves each user hundreds of megabytes of mobile data per day while preserving privacy

    Comparative Resonant Inelastic X-ray Scattering Study of Ca2_2RuO4_4 and Ca3_3Ru2_2O7_7

    Full text link
    We present a combined oxygen KK-egde x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) study of the bilayer ruthenate Ca3_3Ru2_2O7_7. Our RIXS experiments on Ca3_3Ru2_2O7_7 were carried out on the overlapping in-plane and inner apical oxygen resonances, which are distinguishable from the outer apical one. Comparison to equivalent oxygen KK-edge spectra recorded on band-Mott insulating Ca2_2RuO4_4 is made. In contrast to Ca2_2RuO4_4 spectra, which contain excitations linked to Mott physics, Ca3_3Ru2_2O7_7 spectra feature only intra-t2gt_{2g} ones that do not directly involve the Coulomb energy scale. As found in Ca2_2RuO4_4, we resolve two intra-t2gt_{2g} excitations in Ca3_3Ru2_2O7_7. Moreover, the lowest lying excitation in Ca3_3Ru2_2O7_7 shows a significant dispersion, revealing a collective character differently from what is observed in Ca2_2RuO4_4. Theoretical modelling supports the interpretation of this lowest energy excitation in Ca3_3Ru2_2O7_7 as a magnetic transverse mode with multi-particle character, whereas the corresponding excitation in Ca2_2RuO4_4 is assigned to combined longitudinal and transverse spin modes. These fundamental differences are discussed in terms of the inequivalent magnetic ground-state manifestations in Ca2_2RuO4_4 and Ca3_3Ru2_2O7_7.Comment: 10 pages, 5 figures. This manuscript has been submitted to PR

    Scientific merits and analytical challenges of tree-ring densitometry

    Get PDF
    R.W. was supported by NERC grant NE/K003097/1.X-ray microdensitometry on annually-resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density parameter (MXD), but also increasingly through other density parameters. For fifty years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resolution. Here we review the current understanding and merits of wood density for tree-ring research, associated microdensitometric techniques, and analytical measurement challenges. The review is further complemented with a careful comparison of new measurements derived at 17 laboratories, using several different techniques. The new experiment allowed us to corroborate and refresh ?long-standing wisdom?, but also provide new insights. Key outcomes include; i) a demonstration of the need for mass/volume based re-calibration to accurately estimate average ring density; ii) a substantiation of systematic differences in MXD measurements that cautions for great care when combining density datasets for climate reconstructions; and iii) insights into the relevance of analytical measurement resolution in signals derived from tree-ring density data. Finally, we provide recommendations expected to facilitate future inter-comparability and interpretations for global change research.Publisher PDFPeer reviewe

    Impacts of highway traffic exhaust in alpine valleys on the respiratory health in adults: a cross-sectional study

    Get PDF
    BACKGROUND: Most studies having shown respiratory health effects from traffic exhaust were conducted in urban areas with a complex mixture of air pollution sources. This study has investigated the potential impact of traffic exhaust on respiratory symptoms among adults living along a Swiss alpine highway corridor, where traffic exhaust from the respective trans-Alpine highway is the predominant source of air pollution. METHODS: In summer 2005, we recruited 1839 adults aged 15 to 70 from a random sample of 10 communities along the Swiss alpine highway corridors. Subjects answered a questionnaire on respiratory health (asthmatic and bronchitic symptoms), risk factors, and potential confounding variables. We used logistic regression models to assess associations between respiratory symptoms and traffic exposure being defined a) as living within 200 m of the highway, and b) as a bell-shaped function simulating the decrease of pollution levels with increasing distance to the highway. RESULTS: Positive associations were found between living close to a highway and wheezing without cold (OR = 3.10, 95%-CI: 1.27-7.55) and chronic cough (OR = 2.88, 95%-CI: 1.17-7.05). The models using a bell-shaped function suggested that symptoms reached background levels after 400-500 m from the highway. The association with chronic cough was driven by a subgroup reporting hay fever or allergic rhinitis. CONCLUSIONS: Highway traffic exhaust in alpine highway corridors, in the absence of other industrial sources, showed negative associations with the respiratory health of adults, higher than those previously found in urban areas
    corecore