14 research outputs found

    Chemical-sensitive genes in zebrafish (Danio rerio) early development - identification and characterisation of differential expression in embryos exposed to the model compound 3,4-dichloroaniline

    Get PDF
    In the European Union an environmental risk assessment is required for the registration of new chemicals, biocides, pesticides and pharmaceuticals. In order to avoid the release of potential hazardous substances, various ecotoxicity tests are performed, including acute and chronic fish tests. As a consequence of the new program of the European Union “Registration, Evaluation and Authorisation of Chemicals” (REACH) the number of animal experiments for environmental risk assessment is expected to increase remarkably within the next years. On the other hand there is a strong societal demand for reducing the number of animal tests by using alternative in vitro models. According to EU directives, investigations using non-human vertebrate embryos are considered pain free in vitro methods and are therefore accepted as alternatives to animal experiments. For the acute fish test, the Danio rerio embryo test (DarT) has been established as a replacement method and included in national regulations at least for waste water (German Waste Water Dues Law). However, no alternatives for chronic fish tests are currently available. The overall goal of this thesis was to work towards such a replacement by extending DarT zu Gene-DarT. Toxicants will initially interact at the molecular level with consequences for physiology, fitness and survival. The analysis of gene expression patterns may unravel elements of these molecular events before any phenotypic changes are visible. The hypothesis of this thesis therefore was that chemical-sensitive genes in embryos exposed in a conventional DarT may indicate toxic impact of substances at sub-acute concentrations and thus enhance the sensitivity of the embryo toxicity test. Furthermore, unlike the conventional DarT-endpoints, gene expression analysis will provide insights into mechanistic processes underlying toxicity. The 3,4-dichloroaniline (3,4-DCA), which is used as a reference compound in the DarT, was selected as model chemical in this thesis. In a first step, differentially expressed genes in embryos exposed to 3,4-DCA were identified by microarray technology and RT-PCR techniques. Six dose-dependent significant differentially expressed genes were identified. These genes were involved in biotransformation pathways (cyp1a, ahr2), stress response (nrf2, maft, ho-1) and cell cycle control (fzr1). Differential expression upon 3,4-DCA exposure was detected below the LOEC (lowest observed effect concentration = 6.2 µM) of survival or developmental disorders of the embryo test (0.78 µM and above). For the validation of stage specific sensitivity, genes were also analysed in post-hatched stages. Extension of exposure to post-hatched stages resulted in a differential expression at lower concentrations as for the embryonic stages, indicating an improved sensitivity due to stage-specific sensitivity or exposure time. To confirm the adaptive function of the 3,4-DCA-sensitive genes, embryonic mRNA abundance was experimentally manipulated by knock down and overexpression. By injection of sense (mRNA) or antisense (siRNA) RNA in one-cell-stages of embryos, the transcript levels of genes were transiently enhanced or repressed in embryos exposed to 3,4-DCA. mRNA injection of the genes cyp1a, ho-1 and nrf2 reduced the number of embryos with 3,4-DCA-induced malformations. In contrast, siRNA injections for the same genes led to an increase in the severity and frequency of developmental disorders. The results clearly indicate the adaptive functions of the investigated genes or their corresponding proteins. This study demonstrates that the analysis of chemical-sensitive gene expression shows the potential to increase the sensitivity of conventional toxicity tests. The analysis of gene expression also provides additional mechanistic information for toxic action, e.g. in the presented study, the involvement of Ah-receptor regulated pathways as an adaptive response. Furthermore, the presented data indicate that functional manipulations, using mRNA and siRNA-injection, are suitable to evaluate the role of differentially expressed genes for toxicity

    Rare coding variants and X-linked loci associated with age at menarche.

    Get PDF
    More than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only ∼3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08-4.6%; effect sizes 0.08-1.25 years per allele; P<5 × 10(-8)). In addition, we identify common X-chromosome loci at IGSF1 (rs762080, P=9.4 × 10(-13)) and FAAH2 (rs5914101, P=4.9 × 10(-10)). Highlighted genes implicate cellular energy homeostasis, post-transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-year-later menarche (P=2.8 × 10(-11)), illustrating the utility of population studies to estimate the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain ∼0.5% variance, indicating that these overlooked sources of variation do not substantially explain the 'missing heritability' of this complex trait.UK sponsors (see article for overseas ones): This work made use of data and samples generated by the 1958 Birth Cohort (NCDS). Access to these resources was enabled via the 58READIE Project funded by Wellcome Trust and Medical Research Council (grant numbers WT095219MA and G1001799). A full list of the financial, institutional and personal contributions to the development of the 1958 Birth Cohort Biomedical resource is available at http://www2.le.ac.uk/projects/birthcohort. Genotyping was undertaken as part of the Wellcome Trust Case-Control Consortium (WTCCC) under Wellcome Trust award 076113, and a full list of the investigators who contributed to the generation of the data is available at www.wtccc.org.uk ... The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. ... SIBS - CRUK ref: C1287/A8459 SEARCH - CRUK ref: A490/A10124 EMBRACE is supported by Cancer Research UK Grants C1287/A10118, C1287/A16563 and C1287/A17523. Genotyping was supported by Cancer Research - UK grant C12292/A11174D and C8197/A16565. Gareth Evans and Fiona Lalloo are supported by an NIHR grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant C5047/A8385. ... Generation Scotland - Scottish Executive Health Department, Chief Scientist Office, grant number CZD/16/6. Exome array genotyping for GS:SFHS was funded by the Medical Research Council UK. 23andMe - This work was supported in part by NIH Award 2R44HG006981-02 from the National Human Genome Research Institute.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms875

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to similar to 370,000 women, we identify 389 independent signals (P <5 x 10(-8)) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain similar to 7.4% of the population variance in age at menarche, corresponding to similar to 25% of the estimated heritability. We implicate similar to 250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project–imputed genotype data in up to ~370,000 women, we identify 389 independent signals (P < 5 × 108^{−8}) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ~7.4% of the population variance in age at menarche, corresponding to ~25% of the estimated heritability. We implicate ~250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    Chemical-sensitive genes in zebrafish (Danio rerio) early development - identification and characterisation of differential expression in embryos exposed to the model compound 3,4-dichloroaniline

    Get PDF
    In the European Union an environmental risk assessment is required for the registration of new chemicals, biocides, pesticides and pharmaceuticals. In order to avoid the release of potential hazardous substances, various ecotoxicity tests are performed, including acute and chronic fish tests. As a consequence of the new program of the European Union “Registration, Evaluation and Authorisation of Chemicals” (REACH) the number of animal experiments for environmental risk assessment is expected to increase remarkably within the next years. On the other hand there is a strong societal demand for reducing the number of animal tests by using alternative in vitro models. According to EU directives, investigations using non-human vertebrate embryos are considered pain free in vitro methods and are therefore accepted as alternatives to animal experiments. For the acute fish test, the Danio rerio embryo test (DarT) has been established as a replacement method and included in national regulations at least for waste water (German Waste Water Dues Law). However, no alternatives for chronic fish tests are currently available. The overall goal of this thesis was to work towards such a replacement by extending DarT zu Gene-DarT. Toxicants will initially interact at the molecular level with consequences for physiology, fitness and survival. The analysis of gene expression patterns may unravel elements of these molecular events before any phenotypic changes are visible. The hypothesis of this thesis therefore was that chemical-sensitive genes in embryos exposed in a conventional DarT may indicate toxic impact of substances at sub-acute concentrations and thus enhance the sensitivity of the embryo toxicity test. Furthermore, unlike the conventional DarT-endpoints, gene expression analysis will provide insights into mechanistic processes underlying toxicity. The 3,4-dichloroaniline (3,4-DCA), which is used as a reference compound in the DarT, was selected as model chemical in this thesis. In a first step, differentially expressed genes in embryos exposed to 3,4-DCA were identified by microarray technology and RT-PCR techniques. Six dose-dependent significant differentially expressed genes were identified. These genes were involved in biotransformation pathways (cyp1a, ahr2), stress response (nrf2, maft, ho-1) and cell cycle control (fzr1). Differential expression upon 3,4-DCA exposure was detected below the LOEC (lowest observed effect concentration = 6.2 µM) of survival or developmental disorders of the embryo test (0.78 µM and above). For the validation of stage specific sensitivity, genes were also analysed in post-hatched stages. Extension of exposure to post-hatched stages resulted in a differential expression at lower concentrations as for the embryonic stages, indicating an improved sensitivity due to stage-specific sensitivity or exposure time. To confirm the adaptive function of the 3,4-DCA-sensitive genes, embryonic mRNA abundance was experimentally manipulated by knock down and overexpression. By injection of sense (mRNA) or antisense (siRNA) RNA in one-cell-stages of embryos, the transcript levels of genes were transiently enhanced or repressed in embryos exposed to 3,4-DCA. mRNA injection of the genes cyp1a, ho-1 and nrf2 reduced the number of embryos with 3,4-DCA-induced malformations. In contrast, siRNA injections for the same genes led to an increase in the severity and frequency of developmental disorders. The results clearly indicate the adaptive functions of the investigated genes or their corresponding proteins. This study demonstrates that the analysis of chemical-sensitive gene expression shows the potential to increase the sensitivity of conventional toxicity tests. The analysis of gene expression also provides additional mechanistic information for toxic action, e.g. in the presented study, the involvement of Ah-receptor regulated pathways as an adaptive response. Furthermore, the presented data indicate that functional manipulations, using mRNA and siRNA-injection, are suitable to evaluate the role of differentially expressed genes for toxicity

    Chemical-sensitive genes in zebrafish (Danio rerio) early development - identification and characterisation of differential expression in embryos exposed to the model compound 3,4-dichloroaniline

    No full text
    In the European Union an environmental risk assessment is required for the registration of new chemicals, biocides, pesticides and pharmaceuticals. In order to avoid the release of potential hazardous substances, various ecotoxicity tests are performed, including acute and chronic fish tests. As a consequence of the new program of the European Union “Registration, Evaluation and Authorisation of Chemicals” (REACH) the number of animal experiments for environmental risk assessment is expected to increase remarkably within the next years. On the other hand there is a strong societal demand for reducing the number of animal tests by using alternative in vitro models. According to EU directives, investigations using non-human vertebrate embryos are considered pain free in vitro methods and are therefore accepted as alternatives to animal experiments. For the acute fish test, the Danio rerio embryo test (DarT) has been established as a replacement method and included in national regulations at least for waste water (German Waste Water Dues Law). However, no alternatives for chronic fish tests are currently available. The overall goal of this thesis was to work towards such a replacement by extending DarT zu Gene-DarT. Toxicants will initially interact at the molecular level with consequences for physiology, fitness and survival. The analysis of gene expression patterns may unravel elements of these molecular events before any phenotypic changes are visible. The hypothesis of this thesis therefore was that chemical-sensitive genes in embryos exposed in a conventional DarT may indicate toxic impact of substances at sub-acute concentrations and thus enhance the sensitivity of the embryo toxicity test. Furthermore, unlike the conventional DarT-endpoints, gene expression analysis will provide insights into mechanistic processes underlying toxicity. The 3,4-dichloroaniline (3,4-DCA), which is used as a reference compound in the DarT, was selected as model chemical in this thesis. In a first step, differentially expressed genes in embryos exposed to 3,4-DCA were identified by microarray technology and RT-PCR techniques. Six dose-dependent significant differentially expressed genes were identified. These genes were involved in biotransformation pathways (cyp1a, ahr2), stress response (nrf2, maft, ho-1) and cell cycle control (fzr1). Differential expression upon 3,4-DCA exposure was detected below the LOEC (lowest observed effect concentration = 6.2 µM) of survival or developmental disorders of the embryo test (0.78 µM and above). For the validation of stage specific sensitivity, genes were also analysed in post-hatched stages. Extension of exposure to post-hatched stages resulted in a differential expression at lower concentrations as for the embryonic stages, indicating an improved sensitivity due to stage-specific sensitivity or exposure time. To confirm the adaptive function of the 3,4-DCA-sensitive genes, embryonic mRNA abundance was experimentally manipulated by knock down and overexpression. By injection of sense (mRNA) or antisense (siRNA) RNA in one-cell-stages of embryos, the transcript levels of genes were transiently enhanced or repressed in embryos exposed to 3,4-DCA. mRNA injection of the genes cyp1a, ho-1 and nrf2 reduced the number of embryos with 3,4-DCA-induced malformations. In contrast, siRNA injections for the same genes led to an increase in the severity and frequency of developmental disorders. The results clearly indicate the adaptive functions of the investigated genes or their corresponding proteins. This study demonstrates that the analysis of chemical-sensitive gene expression shows the potential to increase the sensitivity of conventional toxicity tests. The analysis of gene expression also provides additional mechanistic information for toxic action, e.g. in the presented study, the involvement of Ah-receptor regulated pathways as an adaptive response. Furthermore, the presented data indicate that functional manipulations, using mRNA and siRNA-injection, are suitable to evaluate the role of differentially expressed genes for toxicity

    Testing the bioaccumulation of manufactured nanomaterials in the freshwater bivalve Corbicula fluminea using a new test method

    No full text
    Increasing amounts of manufactured nanomaterials (MNMs) are produced for their industrial use and released to the environment by the usage or disposal of the products. As depending on their annual production rate, substances are subjected to PBT assessment, the availability of reliable methods to evaluate these endpoints for (corresponding) nanoforms/MNMs becomes relevant. The classical method to elucidate the bioaccumulation potential of chemicals has been the flow-through study with fish, which has limitations as regards meeting the requirements of MNMs. Most MNMs tend to sediment in the aquatic environment. Thus, maintenance of stable exposure conditions for bioaccumulation testing with fish is nearly impossible to achieve when using MNMs. Corbicula fluminea, a freshwater filter-feeding bivalve distributed worldwide, has been previously shown to ingest and accumulate MNMs present in the water phase. To investigate the suitability of C. fluminea for bioaccumulation testing we developed a new flow-through system to expose mussels under constant exposure conditions. Two nanoparticles (NPs), the AgNP NM 300K and the TiO2NP NM 105, were applied. In addition, C. fluminea was exposed to AgNO3 as a source of dissolved Ag+ to compare the bioaccumulation of Ag in dissolved and nanoparticulate forms. For each MNM exposure scenario we were able to determine steady-state bioaccumulation factors. BAFss values of 31 and 128 for two NM 300K concentrations (0.624 and 6.177 μg Ag per L) and 6150 and 9022 for TiO2 (0.099 and 0.589 μg TiO2 per L) showed the exposure dependence of the BAFss estimates. The progression of metal uptake and elimination in the soft tissue provided clear indications that the uptake and thus accumulation is mainly driven by the uptake of NPs and less of dissolved ions

    Scientific Stakeholder Meeting on Nanomaterials in the Environment

    No full text
    This report summarizes the contents and outcomes of the Scientific Stakeholder Meeting on Nano-materials in the Environment which took place on the 10th and 11th October 2017 at the headquarters of the German Environment Agency (UBA) in Dessau-Rosslau, Germany. The meeting was hosted by UBA and financed by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. The meeting focused on regulatory relevant results of German and European re-search projects on nanomaterials in the environment which are carried out or finalised in the current years. By this, it gave a forum to present the state of the knowledge on environmental nanosafety in a regulatory context as well as to discuss the scientific results and their regulatory relevance between affected stakeholders. Therefore, the meeting particularly addressed representatives of science, indus-try, risk assessors, regulatory experts, and NGOs. It included key note talks, invited platform presenta-tions as well as poster presentations. A Knowledge Café provided the opportunity to discuss selected topics with regard to environmental safety of nanomaterials in smaller groups. The meeting was closed with a discussion on the lessons learned highlighting the outcomes of the meeting by the views of different stakeholders
    corecore