162 research outputs found

    High Genetic Differentiation Among French Populations of the Orsini's Viper (Vipera ursinii ursinii) Based on Mitochondrial and Microsatellite Data: Implications for Conservation Management

    Get PDF
    The Orsini's viper (Vipera ursinii) is one of the most threatened snakes in Europe due to its highly fragmented distribution and specific open environment (steppic habitat) requirement. French populations are isolated on top of mountain massifs of the southern Prealps/Alps. Mitochondrial sequences (cytochrome b) and 6 microsatellite loci have been used to estimate the levels of genetic diversity and isolation within and among 11 French fragmented populations (a total of 157 individuals). Eleven cytochrome b haplotypes with a limited divergence were observed (mean divergence between haplotypes: 0.31%). However, we detected considerable genetic differentiation among populations (global FST = 0.76 and 0.26 for mitochondrial and nuclear DNA, respectively). Results indicate that 3 populations possibly went through a bottleneck and 1 population showed low genetic diversity compared with the others. Although a significant isolation by distance was detected for both markers, strong differentiation was also observed between geographically close populations, probably due to the ragged landscape that constitutes a serious barrier to gene flow owing to the limited dispersal capability of the viper. Despite some discrepancies between the 2 markers, 8 Management Units have been identified and should be considered for future management project

    Prion protein in the cerebrospinal fluid of healthy and naturally scrapie-affected sheep

    Get PDF
    The aim of this study was to characterize the cerebrospinal fluid (CSF) prion protein (PrP) of healthy and naturally scrapie-affected sheep. The soluble form of CSF PrPC immunoblotted with an anti-octarepeat and an anti-C terminus mAb showed two isoforms of approximately 33 and 26 kDa, corresponding to the biglycosylated and unglycosylated isoforms of brain PrPC. Neither the mean concentration nor the electrophoretic profile of CSF PrP differed between healthy and scrapieaffected sheep, whereas a slightly increased resistance of CSF PrP to mild proteolysis by proteinase K was evident in the CSF of scrapie-affected sheep. No difference in susceptibility to proteolysis was observed between the two ARR and VRQ genetic variants of the purified prokaryote recombinant PrP. It was concluded that the physicochemical properties of PrPC in the CSF could be altered during scrapie and that these changes might reflect the physiopathological process of prion disease

    Native lysozyme and dry-heated lysozyme interactions with membrane lipid monolayers: lateral reorganization of LPS monolayer, model of the E. coli outer membrane

    No full text
    International audienceLysozyme is mainly described active against Gram-positive bacteria, but is also efficient against some Gram-negative species. Especially, it was recently demonstrated that lysozyme disrupts Escherichia coli membranes. Moreover, dry-heating changes the physicochemical properties of the protein and increases the membrane activity of lysozyme. In order to elucidate the mode of insertion of lysozyme into the bacterial membrane, the interaction between lysozyme and a LPS monolayer mimicking the E. coli outer membrane has been investigated by tensiometry, ellipsometry, Brewster angle microscopy and atomic force microscopy. It was thus established that lysozyme has a high affinity for the LPS monolayer, and is able to insert into the latter as long as polysaccharide moieties are present, causing reorganization of the LPS monolayer. Dry-heating increases the lysozyme affinity for the LPS monolayer and its insertion capacity; the resulting reorganization of the LPS monolayer is different and more drastic than with the native protein

    Inhibition of anti-tuberculosis T-lymphocyte function with tumour necrosis factor antagonists

    Get PDF
    Reactivation of latent Mycobacterium tuberculosis (Mtb) infection is a major complication of anti-tumour necrosis factor (TNF)-α treatment, but its mechanism is not fully understood. We evaluated the effect of the TNF antagonists infliximab (Ifx), adalimumab (Ada) and etanercept (Eta) on anti-mycobacterial immune responses in two conditions: with ex vivo studies from patients treated with TNF antagonists and with the in vitro addition of TNF antagonists to cells stimulated with mycobacterial antigens. In both cases, we analysed the response of CD4(+ )T lymphocytes to purified protein derivative (PPD) and to culture filtrate protein (CFP)-10, an antigen restricted to Mtb. The tests performed were lymphoproliferation and immediate production of interferon (IFN)-γ. In the 68 patients with inflammatory diseases (rheumatoid arthritis, spondylarthropathy or Crohn's disease), including 31 patients with a previous or latent tuberculosis (TB), 14 weeks of anti-TNF-α treatment had no effect on the proliferation of CD4(+ )T lymphocytes. In contrast, the number of IFN-γ-releasing CD4(+ )T lymphocytes decreased for PPD (p < 0.005) and CFP-10 (p < 0.01) in patients with previous TB and for PPD (p < 0.05) in other patients (all vaccinated with Bacille Calmette-Guérin). Treatments with Ifx and with Eta affected IFN-γ release to a similar extent. In vitro addition of TNF antagonists to CD4(+ )T lymphocytes stimulated with mycobacterial antigens inhibited their proliferation and their expression of membrane-bound TNF (mTNF). These effects occurred late in cultures, suggesting a direct effect of TNF antagonists on activated mTNF(+ )CD4(+ )T lymphocytes, and Ifx and Ada were more efficient than Eta. Therefore, TNF antagonists have a dual action on anti-mycobacterial CD4(+ )T lymphocytes. Administered in vivo, they decrease the frequency of the subpopulation of memory CD4(+ )T lymphocytes rapidly releasing IFN-γ upon challenge with mycobacterial antigens. Added in vitro, they inhibit the activation of CD4(+ )T lymphocytes by mycobacterial antigens. Such a dual effect may explain the increased incidence of TB in patients treated with TNF antagonists as well as possible differences between TNF antagonists for the incidence and the clinical presentation of TB reactivation

    The treatment response of chronically hepatitis C virus-infected patients depends on interferon concentration but not on interferon gene expression in peripheral blood mononuclear cells.

    No full text
    International audienceThe current treatment of chronic hepatitis C is based on pegylated alpha interferon (PEG-IFN-α) and ribavirin. The aim of this study was to identify biological and clinical variables related to IFN therapy that could predict patient outcome. The study enrolled 47 patients treated with PEG-IFN and ribavirin combined therapy. The interferon concentration was measured in serum by a bioassay. The expression of 93 interferon-regulated genes in peripheral blood mononuclear cells was quantified by real-time quantitative reverse transcription-PCR (RT-PCR) before and after 1 month of treatment. The interferon concentration in the serum was significantly lower in nonresponders than in sustained virological responders. Moreover, a significant correlation was identified between interferon concentration and interferon exposition as well as body weight. The analysis of interferon-inducible genes in peripheral blood mononuclear cells among the genes tested did not permit the prediction of treatment outcome. In conclusion, the better option seems to be to treat patients with weight-adjusted PEG-IFN doses, particularly for patients with high weight who are treated with PEG-IFN-α2a. Although the peripheral blood mononuclear cell samples are the easiest to obtain, the measurement of interferon-inducible genes seems not be the best strategy to predict treatment outcome

    Multifocal Ectopic Purkinje-Related Premature Contractions: A New SCN5A-Related Cardiac Channelopathy.: MEPPC: a new SCN5A-related cardiac channelopathy

    Get PDF
    International audienceOBJECTIVES: The aim of this study was to describe a new familial cardiac phenotype and to elucidate the electrophysiological mechanism responsible for the disease. BACKGROUND: Mutations in several genes encoding ion channels, especially SCN5A, have emerged as the basis for a variety of inherited cardiac arrhythmias. METHODS: Three unrelated families comprising 21 individuals affected by multifocal ectopic Purkinje-related premature contractions (MEPPC) characterized by narrow junctional and rare sinus beats competing with numerous premature ventricular contractions with right and/or left bundle branch block patterns were identified. RESULTS: Dilated cardiomyopathy was identified in 6 patients, atrial arrhythmias were detected in 9 patients, and sudden death was reported in 5 individuals. Invasive electrophysiological studies demonstrated that premature ventricular complexes originated from the Purkinje tissue. Hydroquinidine treatment dramatically decreased the number of premature ventricular complexes. It normalized the contractile function in 2 patients. All the affected subjects carried the c.665G>A transition in the SCN5A gene. Patch-clamp studies of resulting p.Arg222Gln (R222Q) Nav1.5 revealed a net gain of function of the sodium channel, leading, in silico, to incomplete repolarization in Purkinje cells responsible for premature ventricular action potentials. In vitro and in silico studies recapitulated the normalization of the ventricular action potentials in the presence of quinidine. CONCLUSIONS: A new SCN5A-related cardiac syndrome, MEPPC, was identified. The SCN5A mutation leads to a gain of function of the sodium channel responsible for hyperexcitability of the fascicular-Purkinje system. The MEPPC syndrome is responsive to hydroquinidine

    Symptom-based stratification of patients with primary Sjögren's syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials

    Get PDF
    Background Heterogeneity is a major obstacle to developing effective treatments for patients with primary Sjögren's syndrome. We aimed to develop a robust method for stratification, exploiting heterogeneity in patient-reported symptoms, and to relate these differences to pathobiology and therapeutic response. Methods We did hierarchical cluster analysis using five common symptoms associated with primary Sjögren's syndrome (pain, fatigue, dryness, anxiety, and depression), followed by multinomial logistic regression to identify subgroups in the UK Primary Sjögren's Syndrome Registry (UKPSSR). We assessed clinical and biological differences between these subgroups, including transcriptional differences in peripheral blood. Patients from two independent validation cohorts in Norway and France were used to confirm patient stratification. Data from two phase 3 clinical trials were similarly stratified to assess the differences between subgroups in treatment response to hydroxychloroquine and rituximab. Findings In the UKPSSR cohort (n=608), we identified four subgroups: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant with fatigue (DDF), and pain dominant with fatigue (PDF). Significant differences in peripheral blood lymphocyte counts, anti-SSA and anti-SSB antibody positivity, as well as serum IgG, κ-free light chain, β2-microglobulin, and CXCL13 concentrations were observed between these subgroups, along with differentially expressed transcriptomic modules in peripheral blood. Similar findings were observed in the independent validation cohorts (n=396). Reanalysis of trial data stratifying patients into these subgroups suggested a treatment effect with hydroxychloroquine in the HSB subgroup and with rituximab in the DDF subgroup compared with placebo. Interpretation Stratification on the basis of patient-reported symptoms of patients with primary Sjögren's syndrome revealed distinct pathobiological endotypes with distinct responses to immunomodulatory treatments. Our data have important implications for clinical management, trial design, and therapeutic development. Similar stratification approaches might be useful for patients with other chronic immune-mediated diseases. Funding UK Medical Research Council, British Sjogren's Syndrome Association, French Ministry of Health, Arthritis Research UK, Foundation for Research in Rheumatology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore