11 research outputs found

    Single pulse nanosecond laser‐stimulated targeted delivery of anti‐cancer drugs from hybrid lipid nanoparticles containing 5 nm gold nanoparticles

    Get PDF
    ABSTRACT: Encapsulating chemotherapeutic drugs like doxorubicin (DOX) inside lipid nanoparticles (LNPs) can overcome their acute, systematic toxicity. However, a precise drug release at the tumor microenvironment for improving the maximum tolerated dose and reducing side effects has yet to be well-established by implementing a safe stimuli-responsive strategy. This study proposes an integrated nanoscale perforation to trigger DOX release from hybrid plasmonic multilamellar LNPs composed of 5 nm gold (Au) NPs clustered at the internal lamellae interfaces. To promote site-specific DOX release, a single pulse irradiation strategy is developed by taking advantage of the resonant interaction between nanosecond pulsed laser radiation (527 nm) and the plasmon mode of the hybrid nanocarriers. This approach enlarges the amount of DOX in the target cells up to 11-fold compared to conventional DOX-loaded LNPs, leading to significant cancer cell death. The simulation of the pulsed laser interactions of the hybrid nanocarriers suggests a release mechanism mediated by either explosive vaporization of thin water layers adjacent to AuNP clusters or thermo-mechanical decomposition of overheated lipid layers. This simulation indicates an intact DOX integrity following irradiation since the temperature distribution is highly localized around AuNP clusters and highlights a controlled light-triggered drug delivery system

    Livraison ciblée de médicaments anti-cancéreux stimulée par laser de nanoparticules or-lipides

    No full text
    RÉSUMÉ: Le cancer est une cause de mortalitĂ© des plus importantes dans le monde, celui-ci touche une dizaine de millions de personnes chaque annĂ©e. Les mĂ©thodes actuelles de soin du cancer se sont amĂ©liorĂ©es au cours des derniĂšres annĂ©es mais ne sont pas parfaites et dans de nombreux cas il est impossible de le soigner. Les mĂ©thodes de radiologie, chirurgie ou de chimiothĂ©rapie continuent d'ĂȘtre au centre de la recherche et des nouvelles approches de soin sont investiguĂ©es. Pour la chimiothĂ©rapie, la principale piste Ă©tudiĂ©e est celle de la livraison ciblĂ©e de mĂ©dicaments permettant ainsi de rĂ©duire les effets secondaires de ce type de traitement. L'utilisation de nano vecteurs comme vecteurs de livraison de mĂ©dicaments peut permettre d'augmenter la dose maximale tolĂ©rĂ©e par un ĂȘtre humain et de dĂ©truire les cellules cancĂ©reuses sans affecter les cellules saines. Le laboratoire du Pr Pieter Cullis de l'UniversitĂ© British Columbia a donc mis au point un systĂšme de nanoparticules lipidiques dans lesquelles sont encapsulĂ©es un mĂ©dicament contre le cancer (Doxorubicin) ainsi que des nanoparticules d'or de 5 nm de diamĂštre. Ces nanovecteurs de 100 nm de diamĂštre prĂ©sentent une bonne stabilitĂ© et peuvent circuler dans le corps via le flux sanguin sans ĂȘtre nettoyĂ©s par les cellules macrophages. GrĂące aux propriĂ©tĂ©s optiques uniques des nanoparticules d'or et des interactions nanoparticules-laser, il est possible de libĂ©rer les mĂ©dicaments et donc de cibler seulement un endroit spĂ©cifique et d'effectuer la livraison de mĂ©dicaments aux cellules cancĂ©reuses spĂ©cifiquement. PremiĂšrement, une caractĂ©risation des nanoparticules lipidiques et Ă©tude de leur comportement lors de l'incubation avec les cellules fut effectuĂ©e. DeuxiĂšmement, une Ă©tude de livraison de mĂ©dicaments in vitro sur des cellules MDA-MB-231 de cancer du sein a Ă©tĂ© menĂ©e avec deux lasers diffĂ©rents. Un laser nanoseconde irradiant Ă  527 nm correspondant au pic d'absorption des nanoparticules d'or de 5 nm de diamĂštre permet, lorsque la puissance surfacique est suffisante, de les fragmenter sans endommager les cellules. Une fluence de 71 J/cm2 permet d'obtenir une libĂ©ration quasi-totale de la Doxorubicin dans la zone irradiĂ©e et d'augmenter par un facteur 10 la quantitĂ© de Doxorubicin dĂ©livrĂ©e lorsque des nanoparticules d'or sont encapsulĂ©es. Il suffit que chaque nanoparticule d'or reçoive une impulsion du laser pour induire la livraison ciblĂ©e. Le second type de laser utilisĂ© est un laser femtoseconde irradiant Ă  800 nm. Ici, le laser permet la formation d'une nanobulle autour des nanoparticules d'or et ainsi former de petits trous Ă  la surface des liposomes et laisser le mĂ©dicament s'Ă©chapper. Les rĂ©sultats obtenus sont alors similaires Ă  ceux obtenus avec le laser nanoseconde. ABSTRACT: Cancer is one of the most important causes of death in the world, affecting around ten million people every year. Current methods of cancer treatment have improved in recent years but are not perfect and in many cases, it is impossible to cure. Radiology, surgery or chemotherapy methods continue to be the focus of research and new approaches to treat are being investigated. For chemotherapy, the main strategy studied is targeted delivery of drugs, which could reduce the side effects of this type of treatment. The use of nanovectors as drug delivery vehicles can increase the maximum dose tolerated by a human being and destroy cancer cells without affecting healthy cells. The laboratory of Prof. Pieter Cullis at the University of British Columbia has therefore developed a system of lipid nanoparticles in which a cancer drug (doxorubicin) and gold nanoparticles of 5 nm in diameter are encapsulated. These 100 nm diameter nanovectors have good stability and can circulate in the body via the bloodstream without being cleared by macrophage cells. Due to the unique optical properties of the gold nanoparticles and the nanoparticle-laser interactions, it is possible to release the drugs and thus target only a specific location and deliver the drugs exclusively to the cancer cells. Firstly, a characterization of the lipid nanoparticles and study of their behavior during incubation with cells was performed. Secondly, an in vitro drug delivery study on MDA-MB-231 breast cancer cells was conducted with two different lasers. A nanosecond laser irradiating at 527 nm which correspond to the absorption peak of 5 nm gold nanoparticles allows, when the fluence is sufficient, to fragment them without damaging the cells. A fluence of 71 J/cm2 allows a quasi-total release of Doxorubicin in the irradiated area and increases by a factor of 10 the amount of doxorubicin delivered when gold nanoparticles are encapsulated. It is sufficient for each gold nanoparticle to receive a laser pulse to induce targeted delivery. The second type of laser used is a femtosecond laser irradiating at 800 nm. Here, the laser allows the formation of a nanobubble around the gold nanoparticles and thus forms small holes on the surface of the liposomes and allows the drug to escape. The results obtained are then similar to those obtained with the nanosecond laser
    corecore