649 research outputs found

    Rapid accretion state transitions following the tidal disruption event AT2018fyk

    Get PDF
    Following a tidal disruption event (TDE), the accretion rate can evolve from quiescent to near-Eddington levels and back over months - years timescales. This provides a unique opportunity to study the formation and evolution of the accretion flow around supermassive black holes (SMBHs). We present two years of multi-wavelength monitoring observations of the TDE AT2018fyk at X-ray, UV, optical and radio wavelengths. We identify three distinct accretion states and two state transitions between them. These appear remarkably similar to the behaviour of stellar-mass black holes in outburst. The X-ray spectral properties show a transition from a soft (thermal-dominated) to a hard (power-law dominated) spectral state around Lbol∌_{\rm bol} \sim few ×10−2 \times 10^{-2} LEdd_{\rm Edd}, and the strengthening of the corona over time ∌\sim100--200 days after the UV/optical peak. Contemporaneously, the spectral energy distribution (in particular, the UV-to-X-ray spectral slope αox\alpha_{ox}) shows a pronounced softening as the outburst progresses. The X-ray timing properties also show a marked change, initially dominated by variability at long (>>day) timescales while a high frequency (∌\sim10−3^{-3} Hz) component emerges after the transition into the hard state. At late times (∌\sim500 days after peak), a second accretion state transition occurs, from the hard into the quiescent state, as identified by the sudden collapse of the bolometric (X-ray+UV) emission to levels below 10−3.4^{-3.4} LEdd_{\rm Edd}. Our findings illustrate that TDEs can be used to study the scale (in)variance of accretion processes in individual SMBHs. Consequently, they provide a new avenue to study accretion states over seven orders of magnitude in black hole mass, removing limitations inherent to commonly used ensemble studies.Comment: Accepted version following referee comments. 2 new figures compared to previous arxiv version (Figs 9 and 10). Data will be available from the journal webpages, or upon request to the author

    High-Resolution X-ray and Ultraviolet Spectroscopy of the Complex Intrinsic Absorption in NGC 4051 with Chandra and HST

    Get PDF
    We present the results from simultaneous observations of the Narrow-Line Seyfert 1 galaxy NGC 4051 with the Chandra High Energy Transmission Grating Spectrometer and the HST Space Telescope Imaging Spectrograph. The X-ray grating spectrum reveals absorption and emission lines from hydrogen-like and helium-like ions of O, Ne, Mg and Si. We resolve two distinct X-ray absorption systems: a high-velocity blueshifted system at -2340+/-130 km/s and a low-velocity blueshifted system at -600+/-130 km/s. In the UV spectrum we detect strong absorption, mainly from C IV, N V and Si IV, that is resolved into as many as nine different intrinsic absorption systems with velocities between -650 km/s and 30 km/s. Although the low-velocity X-ray absorption is consistent in velocity with many of the UV absorption systems, the high-velocity X-ray absorption seems to have no UV counterpart. In addition to the absorption and emission lines, we also observe rapid X-ray variability and a state of low X-ray flux during the last ~15 ks of the observation. NGC 4051 has a soft X-ray excess which we fit in both the high and low X-ray flux states. The high-resolution X-ray spectrum directly reveals that the soft excess is not composed of narrow emission lines and that it has significant spectral curvature. A power-law model fails to fit it, while a blackbody produces a nearly acceptable fit. We compare the observed spectral variability with the results of previous studies of NGC 4051.Comment: 16 pages, 13 figures included, LaTeX emulateapj5.sty, accepted for publication in The Astrophysical Journal (this version is the same as the first version

    Intensive disc-reverberation mapping of Fairall 9: First year of Swift and LCO monitoring

    Get PDF
    We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to subdaily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the τ ∝ λ4/3 scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable component’s spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable (100 d) component with an opposite lag to the reverberation signal.JVHS and KH acknowledge support from the Science and Technology Facilities Council grant ST/R000824/1. RE gratefully acknowledges support from National Aeronautics and Space Administration (NASA) Swift Key Project grant number 80NSSC19K0153. JMG gratefully acknowledges support from NASA under the ADAP award 80NSSC17K0126. AAB, KLP, and PAE acknowledge support from the UK Space Agency. Research by AJB was supported by National Science Foundation (NSF) grant AST-1907290. EMC gratefully acknowledges support from the NSF through grant AST-1909199. MV gratefully acknowledges financial support from the Independent Research Fund Denmark via grant number DFF 8021-00130. The authors appreciate the hard work and dedication of the Swift Observatory staff, who created a new UVOT mode in support of this project and put in considerableeffort in scheduling this large program. This work makes use of observations from the LCO network, and of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund and NSF AST-1412587. This research also made use of ASTROPY, a community-developed core PYTHON package for astronomy (Astropy Collaboration et al. 2013), and MATPLOTLIB (Hunter 2007)

    Luminous Thermal Flares from Quiescent Supermassive Black Holes

    Get PDF
    A dormant supermassive black hole lurking in the center of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces, and a flare of electromagnetic radiation is emitted when the bound fraction of the stellar debris falls back onto the black hole and is accreted. Here we present the third candidate tidal disruption event discovered in the GALEX Deep Imaging Survey: a 1.6x10^{43} erg s^{-1} UV/optical flare from a star-forming galaxy at z=0.1855. The UV/optical SED during the peak of the flare measured by GALEX and Palomar LFC imaging can be modeled as a single temperature blackbody with T_{bb}=1.7x10^{5} K and a bolometric luminosity of 3x10^{45} erg s^{-1}, assuming an internal extinction with E(B-V)_{gas}=0.3. The Chandra upper limit on the X-ray luminosity during the peak of the flare, L_{X}(2-10 keV)< 10^{41} erg s^{-1}, is 2 orders of magnitude fainter than expected from the ratios of UV to X-ray flux density observed in active galaxies. We compare the light curves and broadband properties of all three tidal disruption candidates discovered by GALEX, and find that (1) the light curves are well fitted by the power-law decline expected for the fallback of debris from a tidally disrupted solar-type star, and (2) the UV/optical SEDs can be attributed to thermal emission from an envelope of debris located at roughly 10 times the tidal disruption radius of a ~10^{7} M_sun central black hole. We use the observed peak absolute optical magnitudes of the flares (-17.5 > M_{g} > -18.9) to predict the detection capabilities of upcoming optical synoptic surveys. (Abridged)Comment: Accepted for Publication in ApJ, 19 pages, 10 figures, 2 tables, emulateapj, corrections from proofs adde

    Rituximab in Combination with Corticosteroids for the Treatment of Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis: A NICE Single Technology Appraisal

    Get PDF
    As part of its single technology appraisal (STA) process, the National Institute for Health and Care Excellence (NICE) invited the manufacturer of rituximab (Roche Products) to submit evidence of the clinical and cost effectiveness of rituximab in combination with corticosteroids for treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The School of Health and Related Research Technology Appraisal Group at the University of Sheffield was commissioned to act as the independent Evidence Review Group (ERG). The ERG produced a critical review of the evidence for the clinical and cost effectiveness of the technology, based upon the manufacturer’s submission to NICE. The evidence was derived mainly from a double-blind, phase III, placebo-controlled trial of rituximab in patients with new or relapsed ‘severe’ AAV, which compared a rituximab treatment regimen with an oral cyclophosphamide treatment regimen. Intravenous cyclophosphamide is also commonly used but was not included in the pivotal trial. The evidence showed that rituximab is noninferior to oral cyclophosphamide in terms of induction of remission in adults with AAV and de novo disease, and is superior to oral cyclophosphamide in terms of remission in adults who have relapsed once on cyclophosphamide. The ERG concluded that the results of the manufacturer’s economic evaluation could not be considered robust, because of errors and because the full range of relevant treatment sequences were not modelled. The ERG amended the manufacturer’s model and demonstrated that rituximab was likely to represent a cost-effective addition to the treatment sequence if given after cyclophosphamide treatment
    • 

    corecore