76 research outputs found

    Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells.

    Get PDF
    The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity

    Tropical peatlands and their conservation are important in the context of COVID-19 and potential future (zoonotic) disease pandemics.

    Get PDF
    The COVID-19 pandemic has caused global disruption, with the emergence of this and other pandemics having been linked to habitat encroachment and/or wildlife exploitation. High impacts of COVID-19 are apparent in some countries with large tropical peatland areas, some of which are relatively poorly resourced to tackle disease pandemics. Despite this, no previous investigation has considered tropical peatlands in the context of emerging infectious diseases (EIDs). Here, we review: (i) the potential for future EIDs arising from tropical peatlands; (ii) potential threats to tropical peatland conservation and local communities from COVID-19; and (iii) potential steps to help mitigate these risks. We find that high biodiversity in tropical peat-swamp forests, including presence of many potential vertebrate and invertebrate vectors, combined, in places, with high levels of habitat disruption and wildlife harvesting represent suitable conditions for potential zoonotic EID (re-)emergence. Although impossible to predict precisely, we identify numerous potential threats to tropical peatland conservation and local communities from the COVID-19 pandemic. This includes impacts on public health, with the potential for haze pollution from peatland fires to increase COVID-19 susceptibility a noted concern; and on local economies, livelihoods and food security, where impacts will likely be greater in remote communities with limited/no medical facilities that depend heavily on external trade. Research, training, education, conservation and restoration activities are also being affected, particularly those involving physical groupings and international travel, some of which may result in increased habitat encroachment, wildlife harvesting or fire, and may therefore precipitate longer-term negative impacts, including those relating to disease pandemics. We conclude that sustainable management of tropical peatlands and their wildlife is important for mitigating impacts of the COVID-19 pandemic, and reducing the potential for future zoonotic EID emergence and severity, thus strengthening arguments for their conservation and restoration. To support this, we list seven specific recommendations relating to sustainable management of tropical peatlands in the context of COVID-19/disease pandemics, plus mitigating the current impacts of COVID-19 and reducing potential future zoonotic EID risk in these localities. Our discussion and many of the issues raised should also be relevant for non-tropical peatland areas and in relation to other (pandemic-related) sudden socio-economic shocks that may occur in future

    Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index

    Get PDF
    Background Cigarette smoking is associated with lower body mass index (BMI), and a commonly cited reason for unwillingness to quit smoking is a concern about weight gain. Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region (chromosome 15q25) is robustly associated with smoking quantity in smokers, but its association with BMI is unknown. We hypothesized that genotype would accurately reflect smoking exposure and that, if smoking were causally related to weight, it would be associated with BMI in smokers, but not in never smokers. Methods We stratified nine European study samples by smoking status and, in each stratum, analysed the association between genotype of the 15q25 SNP, rs1051730, and BMI. We meta-analysed the results (n = 24 198) and then tested for a genotype × smoking status interaction. Results There was no evidence of association between BMI and genotype in the never smokers {difference per T-allele: 0.05 kg/m2 [95% confidence interval (95% CI): −0.05 to 0.18]; P = 0.25}. However, in ever smokers, each additional smoking-related T-allele was associated with a 0.23 kg/m2 (95% CI: 0.13-0.31) lower BMI (P = 8 × 10−6). The effect size was larger in current [0.33 kg/m2 lower BMI per T-allele (95% CI: 0.18-0.48); P = 6 × 10−5], than in former smokers [0.16 kg/m2 (95% CI: 0.03-0.29); P = 0.01]. There was strong evidence of genotype × smoking interaction (P = 0.0001). Conclusions Smoking status modifies the association between the 15q25 variant and BMI, which strengthens evidence that smoking exposure is causally associated with reduced BMI. Smoking cessation initiatives might be more successful if they include support to maintain a healthy BM

    Investigating the causal effect of smoking on hay fever and asthma: a Mendelian randomization meta-analysis in the CARTA consortium

    Get PDF
    AbstractObservational studies on smoking and risk of hay fever and asthma have shown inconsistent results. However, observational studies may be biased by confounding and reverse causation. Mendelian randomization uses genetic variants as markers of exposures to examine causal effects. We examined the causal effect of smoking on hay fever and asthma by using the smoking-associated single nucleotide polymorphism (SNP) rs16969968/rs1051730. We included 231,020 participants from 22 population-based studies. Observational analyses showed that current vs never smokers had lower risk of hay fever (odds ratio (OR) = 0·68, 95% confidence interval (CI): 0·61, 0·76; P &lt; 0·001) and allergic sensitization (OR = 0·74, 95% CI: 0·64, 0·86; P &lt; 0·001), but similar asthma risk (OR = 1·00, 95% CI: 0·91, 1·09; P = 0·967). Mendelian randomization analyses in current smokers showed a slightly lower risk of hay fever (OR = 0·958, 95% CI: 0·920, 0·998; P = 0·041), a lower risk of allergic sensitization (OR = 0·92, 95% CI: 0·84, 1·02; P = 0·117), but higher risk of asthma (OR = 1·06, 95% CI: 1·01, 1·11; P = 0·020) per smoking-increasing allele. Our results suggest that smoking may be causally related to a higher risk of asthma and a slightly lower risk of hay fever. However, the adverse events associated with smoking limit its clinical significance.</jats:p

    Genomic Expression Libraries for the Identification of Cross-Reactive Orthopoxvirus Antigens

    Get PDF
    Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines

    The Complete Genome Sequence of Escherichia coli EC958: A High Quality Reference Sequence for the Globally Disseminated Multidrug Resistant E. coli O25b:H4-ST131 Clone

    Get PDF
    Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage

    Who Uses Financial Reports and for What Purpose? Evidence from Capital Providers

    Full text link

    Somatic retrotransposition alters the genetic landscape of the human brain

    Get PDF
    Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes
    corecore