17 research outputs found

    A combinatorial guide to phase formation and surface passivation of tungsten titanium oxide prepared by thermal oxidation

    Full text link
    TiO2 and WO3 are two of the most important earth-abundant electronic materials with applications in countless industries. Recently alloys of WO3 and TiO2 have been investigated leading to improvements of key performance indicators for a variety of applications ranging from photo-electrochemical water splitting to electrochromic smart windows. These positive reports and the complexity of the ternary W-Ti-O phase diagram motivate a comprehensive experimental screening of this phase space. Using combinatorial thermal oxidation of solid solution W1-xTix precursors combined with bulk and surface analysis mapping we investigate the oxide phase formation and surface passivation of tungsten titanium oxide in the entire compositional range from pure WO3 to TiO2. The system shows a remarkable structural transition from monoclinic over cubic to tetragonal symmetry with increasing Ti concentration. In addition, a strong Ti surface enrichment is observed for precursor Ti-concentrations in excess of 55 at.%, resulting in the formation of a protective rutile-structured TiO2 surface layer. Despite the structural transitions, the optical properties of the oxide alloys remain largely unaltered demonstrating an independent control of multiple functional properties in W1-xTixOn. The results from this study provide valuable guidelines for future development of W1-xTixOn for electronic and energy applications, but also novel engineering approaches for surface functionalization and additive manufacturing of Ti-based alloys

    Unravelling the ion-energy-dependent structure evolution and its implications for the elastic properties of (V,Al)N thin films

    Get PDF
    Ion irradiation-induced changes in the structure and mechanical properties of metastable cubic (V,Al)N deposited by reactive high power pulsed magnetron sputtering are systematically investigated by correlating experiments and theory in the ion kinetic energy (Ek) range from 4 to 154 eV. Increasing Ek results in film densification and the evolution from a columnar (111) oriented structure at Ek ≤ 24 eV to a fine-grained structure with (100) preferred orientation for Ek ≥ 104 eV. Furthermore, the compressive intrinsic stress increases by 336 % to -4.8 GPa as Ek is increased from 4 to 104 eV. Higher ion kinetic energy causes stress relaxation to -2.7 GPa at 154 eV. These ion irradiation-induced changes in the thin film stress state are in good agreement with density functional theory simulations. Furthermore, the measured elastic moduli of (V,Al)N thin films exhibit no significant dependence on Ek. The apparent independence of the elastic modulus on Ek can be rationalized by considering the concurrent and balancing effects of bombardment-induced formation of Frenkel pairs (causing a decrease in elastic modulus) and evolution of compressive intrinsic stress (causing an increase in elastic modulus). Hence, the evolution of the film stresses and mechanical properties can be understood based on the complex interplay of ion irradiation-induced defect generation and annihilation

    Ion kinetic energy- and ion flux-dependent mechanical properties and thermal stability of (Ti,Al)N thin films

    No full text
    Ion-irradiation-induced changes in structure, elastic properties, and thermal stability of metastable c-(Ti,Al)N thin films synthesized by high-power pulsed magnetron sputtering (HPPMS) and cathodic arc deposition (CAD) are systematically investigated by experiments and density functional theory (DFT) simulations. While films deposited by HPPMS show a random orientation at ion kinetic energies (Ek)>105 eV, an evolution towards (111) orientation is observed in CAD films for Ek>144 eV. The measured ion energy flux at the growing film surface is 3.3 times larger for CAD compared to HPPMS. Hence, it is inferred that formation of the strong (111) texture in CAD films is caused by the ion flux- and ion energy-induced strain energy minimization in defective c-(Ti,Al)N. The ion energy-dependent elastic modulus can be rationalized by considering the ion energy- and orientation-dependent formation of point defects from DFT predictions: The balancing effects of bombardment-induced Frenkel defects formation and the concurrent evolution of compressive intrinsic stress result in the apparent independence of the elastic modulus from Ek for HPPMS films without preferential orientation. However, an ion energy-dependent elastic modulus reduction of ∼18% for the CAD films can be understood by considering the 34% higher Frenkel pair concentration formed at Ek=182 eV upon irradiation of the experimentally observed (111)-oriented (Ti,Al)N in comparison to the (200)-configuration at similar Ek. Moreover, the effect of Frenkel pair concentration on the thermal stability of metastable c-(Ti,Al)N is investigated by differential scanning calorimetry: Ion-irradiation-induced increase in Frenkel pairs concentration retards the wurtzite formation temperature by up to 206 °C
    corecore