15 research outputs found

    Population pharmacokinetics of liposomal amphotericin B in adults with HIV-associated cryptococcal meningoencephalitis

    Get PDF
    BackgroundSingle, high-dose liposomal amphotericin B (LAmB; AmBisome, Gilead Sciences) has demonstrated non-inferiority to amphotericin B deoxycholate in combination with other antifungals for averting all-cause mortality from HIV-associated cryptococcal meningitis. There are limited data on the pharmacokinetics (PK) of AmBisome. The aim of this study was to describe population PK of AmBisome and conduct a meta-analysis of the available studies to suggest the optimal dosing for cryptococcal meningoencephalitis.MethodsData from a Phase II and Phase III trial of high-dose, short-course AmBisome for cryptococcal meningoencephalitis were combined to develop a population PK model. A search was conducted for trials of AmBisome monotherapy and meta-analysis of clinical outcome data was performed.ResultsA two-compartment model with first-order clearance of drug from the central compartment fitted the data best and enabled the extent of inter-individual variability in PK to be quantified. Mean (SD) population PK parameter estimates were: clearance 0.416 (0.363)  L/h; volume of distribution 4.566 (4.518) L; first-order transfer of drug from central to peripheral compartments 2.222 (3.351)  h-1, and from peripheral to central compartment 2.951 (4.070)  h-1. Data for the meta-analysis were insufficient to suggest optimal dosing of AmBisome for cryptococcal meningoencephalitis.ConclusionsThis study provides novel insight into the PK of AmBisome at the population level and the variability therein. Our analysis also serves to highlight the paucity of data available on the pharmacodynamics (PD) of AmBisome and underscores the importance of thorough and detailed PK/PD analysis in the development of novel antifungals, by demonstrating the challenges associated with post hoc PK/PD analysis

    The Contribution of Occult Precipitation to Nutrient Deposition on the West Coast of South Africa

    Get PDF
    The Strandveld mediterranean-ecosystem of the west coast of South Africa supports floristically diverse vegetation growing on mostly nutrient-poor aeolian sands and extending from the Atlantic Ocean tens of kilometers inland. The cold Benguela current upwelling interacts with warm onshore southerly winds in summer causing coastal fogs in this region. We hypothesized that fog and other forms of occult precipitation contribute moisture and nutrients to the vegetation. We measured occult precipitation over one year along a transect running inland in the direction of the prevailing wind and compared the nutrient concentrations with those in rainwater. Occult deposition rates of P, N, K, Mg, Ca, Na, Al and Fe all decreased with distance from the ocean. Furthermore, ratios of cations to Na were similar to those of seawater, suggesting a marine origin for these. In contrast, N and P ratios in occult precipitation were higher than in seawater. We speculate that this is due to marine foam contributing to occult precipitation. Nutrient loss in leaf litter from dominant shrub species was measured to indicate nutrient demand. We estimated that occult precipitation could meet the demand of the dominant shrubby species for annual N, P, K and Ca. Of these species, those with small leaves intercepted more moisture and nutrients than those with larger leaves and could take up foliar deposits of glycine, NO3-, NH4 + and Li (as tracer for K) through leaf surfaces. We conclude that occult deposition together with rainfall deposition are potentially important nutrient and moisture sources for the Strandveld vegetation that contribute to this vegetation being floristically distinct from neighbouring nutrient-poor Fynbos vegetation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Perceived Level of Disability: Factors Influencing Therapists' Judgment for Clients With Cerebral Palsy

    No full text
    Full-text article is free to read on the publisher's website Objective This study aimed to understand the factors that influence therapists' perceived level of disability with regard to clients with cerebral palsy and association of these factors with their decisions about intervention options. Methods One hundred and ten hypothetical case vignettes were developed, and therapists were asked to identify the level of disability and the intervention option for each case. Eighteen experienced occupational therapists with an average of 10 years' clinical experience participated in this study. Results Therapists mostly used two factors to identify the level of disability; namely, severity of spasticity and limitation in gross movement. The factors driving intervention options also included severity of spasticity, but this was coupled with wrist and finger posture instead of gross movement. Finally, there was no association between the therapists' perception of client disability and their decision about intervention options. Conclusions This finding suggests that therapists utilise different decision making processes when determining the level of disability and identifying intervention options for clients with cerebral palsy

    Biological–physical interactions are fundamental to understanding and managing coastal dynamics

    No full text
    There is an urgent need to address coastal dynamics as a fundamental interaction between physical and biological processes, particularly when trying to predict future biological–physical linkages under anticipated changes in environmental forcing. More integrated modelling, support for observational networks and the use of management interventions as controlled experimental exercises should now be vigorously pursued

    Biological–physical interactions are fundamental to understanding and managing coastal dynamics

    Get PDF
    There is an urgent need to address coastal dynamics as a fundamental interaction between physical and biological processes, particularly when trying to predict future biological–physical linkages under anticipated changes in environmental forcing. More integrated modelling, support for observational networks and the use of management interventions as controlled experimental exercises should now be vigorously pursued

    Biological–physical interactions are fundamental to understanding and managing coastal dynamics

    No full text
    There is an urgent need to address coastal dynamics as a fundamental interaction between physical and biological processes, particularly when trying to predict future biological–physical linkages under anticipated changes in environmental forcing. More integrated modelling, support for observational networks and the use of management interventions as controlled experimental exercises should now be vigorously pursued
    corecore