49 research outputs found

    Wissenschaftliche Weiterbildung zwischen Forschung und Praxis: Einleitung

    Get PDF
    In diesem multidisziplinären Sammelband schreiben die Autorinnen und Autoren über wissenschaftliche Weiterbildung an Hochschulen aus Sicht der Erwachsenen- und Weiterbildungsforschung, der Organisationsforschung, des Managements und der Hochschuldidaktik. In Forschungsarbeiten aus unterschiedlichen Disziplinen und Perspektiven zeichnen sie ein umfassendes und kritisches Bild der wissenschaftlichen Weiterbildung. Untersucht wird der Umgang mit den Themen Studierfähigkeit, Gewinnung von Teilnehmenden, Durchlässigkeit, Gestaltung von Curricula, Medieneinsatz und -kompetenz sowie Organisationsentwicklung. Im Spannungsfeld zwischen Forschung und Gestaltung wird der Blick auf zentrale Herausforderungen der wissenschaftlichen Weiterbildung und konzeptionelle Impulse für die Weiterentwicklung und Ausgestaltung gerichtet

    Ein Blick auf und in die Magdeburger Weiterbildungsforschung. Forschungsbasierte Projektarchitekturen

    Full text link
    Das Projekt „Weiterbildungscampus Magdeburg“ hat es sich zur Aufgabe gemacht, bedarfsgerechte und nachfrageorientierte wissenschaftliche Weiterbildungsstudiengänge anhand der fünf forschungsleitenden Fragestellungen Studierfähigkeit, Teilnehmergewinnung, Curriculaübertragung, Formatentwicklung und Organisationsentwicklung zu er- und beforschen sowie die Erkenntnisse für die (Weiter-) Entwicklung dieser wissenschaftlichen Weiterbildungsangebote zu nutzen. Der Artikel beschreibt die Projektarchitektur unter Einbezug der aktuellen Forschungsarbeiten im Projekt. (DIPF/Orig.

    Digitalisierung in ländlichen und verdichteten Räumen: Positionierung und Handlungsbedarfe

    Get PDF
    In dem Fazit dieses Bandes werden Rahmenbedingungen und Implikationen der Digitalisierung für die Raumentwicklung im LAG-Gebiet Hessen, Rheinland-Pfalz, Saarland erneut aufgegriffen. Fragen und Folgen der Digitalisierungsprozesse in ausgewählten Bereichen werden zusammenfasend skizziert. Handlungs- und Planungserfordernisse ebenso wie die Folgen für den Beruf des Raumplaners und der Raumplanerin werden thesenförmig dokumentiert. Auf Grund der Aktualität wird zudem das Zusammenwirken von Corona-Pandemie und Raumwirksamkeit der Digitalisierung behandelt.The conclusion of this volume revisits the parameters and implications of digitalisation for spatial development in the LAG-area Hessen, Rhineland-Palatinate and Saarland. The issues faced by and consequences of digitalisation processes in selected fields are summarised. Needs for action and planning are discussed and possible effects on the spatial planning profession proposed. In recognition of the currency of the topic, interactions between the coronavirus pandemic and the spatial impact of digitalisation are considered

    Ein Blick auf und in die Magdeburger Weiterbildungsforschung. Forschungsbasierte Projektarchitekturen

    Get PDF
    Das Projekt „Weiterbildungscampus Magdeburg“ hat es sich zur Aufgabe gemacht, bedarfsgerechte und nachfrageorientierte wissenschaftliche Weiterbildungsstudiengänge anhand der fünf forschungsleitenden Fragestellungen Studierfähigkeit, Teilnehmergewinnung, Curriculaübertragung, Formatentwicklung und Organisationsentwicklung zu er- und beforschen sowie die Erkenntnisse für die (Weiter-)Entwicklung dieser wissenschaftlichen Weiterbildungsangebote zu nutzen. Der Artikel beschreibt die Projektarchitektur unter Einbezug der aktuellen Forschungsarbeiten im Projekt

    Aufbruch - Veränderung - Positionierung: Erfahrungen aus 25 Jahren wissenschaftlicher Weiterbildung

    Get PDF
    Seit 1993 gibt es an der heutigen Otto-von-Guericke-Universität Magdeburg einen weiterbildenden Studiengang der Erwachsenenbildung. Im Beitrag wird der Blick auf 25 Jahre Entwicklungsgeschichte, Gelingensbedingungen und aktuelle Herausforderungen gerichtet. In einem moderierten Gespräch rekonstruieren und bewerten vier zu unterschiedlichen Zeiten verantwortliche Professoren die Geschichte und aktuelle Situation des Studiengangs. Dies sind Erich Schäfer als Akteur der ersten Stunde, Michael Dick für die Zeit der Umstellung vom Zertifikats- zum Masterstudium sowie Olaf Dörner und Johannes Fromme, die seit einigen Jahren den Studiengang unterstützt durch Olaf Freymark und Heike Schröder leiten. Das 2,5-stündige Gespräch führte Linda Vieback. Abgedruckt ist nicht die vollständige ursprüngliche Diskussion, sondern eine gekürzte und im Nachgang von den Herausgeber:innen in Abstimmung mit den Diskutanten redaktionell überarbeitete und in Details ergänzte Fassung

    The Amsterdam Declaration on Fungal Nomenclature

    Get PDF
    The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented

    Finding needles in haystacks:Linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Fusarium: more than a node or a foot-shaped basal cell

    Get PDF
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org)

    Fungal Planet description sheets: 868-950

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl.Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. barkcanker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes
    corecore