602 research outputs found

    ϕ\phi meson production and partonic collectivity at RHIC

    Full text link
    New results on ϕ\phi-meson production and elliptic flow v2v_{2} measurements from RHIC 2004 run (Run-IV) have been reviewed. In addition, the di-hadron correlation function between the trigged ϕ\phi and Ω\Omega and the associated soft particles was simulated. Knowledge about these results are discussed.Comment: 8 pages, 7 figures; Invited talk in International Conference on Strangess in Quark Matter (SQM2006), UCLA, California, USA, March 26-31, 2006; to be publsihed in the Proceeding isuue of J. Phys.

    Syntaxin 1 Ser14 phosphorylation is required for nonvesicular dopamine release

    Get PDF
    Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser(14) by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

    Full text link
    The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure

    Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

    Get PDF
    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review C

    Pion interferometry in Au+Au collisions at sNN\sqrt{\mathrm{s}_{_{\mathrm{NN}}}} = 200 GeV

    Get PDF
    We present a systematic analysis of two-pion interferometry in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV using the STAR detector at RHIC. We extract the HBT radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianess of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast wave parameterizations. The expansion of the source and its relation with the initial energy density distribution is studied.Comment: 21 pages, 30 figures. As published in Physics Review

    Pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV

    Get PDF
    We present a systematic analysis of two-pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV using the STAR detector at Relativistic Heavy Ion Collider. We extract the Hanbury-Brown and Twiss radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianness of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast-wave parametrizations. The expansion of the source and its relation with the initial energy density distribution is studied

    Charged and strange hadron elliptic flow in Cu+Cu collisions at sNN\sqrt{s_{NN}} = 62.4 and 200 GeV

    Get PDF
    We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons KS0K_{S}^{0}, Λ\Lambda, Ξ\Xi, ϕ\phi in the midrapidity region eta<1.0|eta|<1.0. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, η<1.0|\eta|<1.0, with those at forward rapidity, 2.5<η<4.02.5<|\eta|<4.0. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that v2v_{2}(pTp_{T}) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, pT<2GeV/cp_T<2GeV/c, v2v_{2} scales with transverse kinetic energy, mTmm_{T}-m, and (ii) at intermediate pTp_T, 2<pT<4GeV/c2<p_T<4GeV/c, it scales with the number of constituent quarks, nqn_q. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v2v_{2}(pTp_{T}) for KS0K_{S}^{0} and Λ\Lambda. Eccentricity scaled v2v_2 values, v2/ϵv_{2}/\epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows v2/ϵv_{2}/\epsilon depend on the system size, number of participants NpartN_{part}. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.Comment: 18 pages, 14 figure

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    Identified high-pTp_{T} spectra in Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 GeV

    Get PDF
    We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3<pTp_{T}<10 GeV/c) from Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-pTp_{T} and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.Comment: Submitted to Phys. Rev. C, 9 pages, 5 figure
    corecore