39 research outputs found

    Regionalization of precipitation characteristics in Iran’s Lake Urmia basin

    No full text
    Abstract Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful

    Assessment of numerical schemes for solving the advection–diffusion equation on unstructured grids: case study of the Guaíba River, Brazil

    No full text
    In this work, a first-order upwind and a high-order flux-limiter schemes for solving the advection–diffusion equation on unstructured grids were evaluated. The numerical schemes were implemented as a module of an unstructured two-dimensional depth-averaged circulation model for shallow lakes (IPH-UnTRIM2D), and they were applied to the Guaíba River in Brazil. Their performances were evaluated by comparing mass conservation balance errors for two scenarios of a passive tracer released into the Guaíba River. The circulation model showed good agreement with observed data collected at four water level stations along the Guaíba River, where correlation coefficients achieved values up to 0.93. In addition, volume conservation errors were lower than 1% of the total volume of the Guaíba River. For all scenarios, the higher order flux-limiter scheme has been shown to be less diffusive than a first-order upwind scheme. Accumulated conservation mass balance errors calculated for the flux limiter reached 8%, whereas for a first-order upwind scheme, they were close to 18% over a 15-day period. Although both schemes have presented mass conservation errors, these errors are assumed negligible compared with kinetic processes such as erosion, sedimentation or decay rates

    Stable Isotopes in Precipitation Recording South American Summer Monsoon and ENSO Variability - Observations and Model Results

    Get PDF
    The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence delta(18)O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance ( low level) and exit ( upper level) region over the western equatorial Atlantic is used to de. ne interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between delta(18)O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called "amount effect", often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in delta(18)O. In many locations the stable isotopic composition is closely related to El Nino-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and delta(18)O variability. Therefore many regions show a weakened relationship between SASM and delta(18)O, once the SASM signal is decomposed into its ENSO-, and non-ENSO- related variance. [References: 69

    Landscape changes over 30 years of intense economic activity in the upper Paraná River basin

    No full text
    In this study, we show the complexity associated with the recent land cover changes by elucidating the paths of 30 years of changes in the Upper Paraná River Basin (UPRB), a region severely impacted by agricultural activity, one of the areas with the highest density in the production of hydroelectricity, biofuels and food in the world. In this sense, a post-classification comparison approach based on Landsat images was used to identify detailed ‘from-to’ paths behind those land cover changes. The most expressive changes were the expansion of Cropland and Forest areas and the reduction in savannas, with a net change of 17.9%, 4.1%, and −16.9% of the UPRB area, respectively. Cropland areas showed an expressive increase between 1985 and 2015, rising from 249,439 km2 (27.7%) to 412,909 km2 (45.9%). Forest areas increased from 149,389 km2 to 185,839 km2 in the period. Notably, for this class, an intense spatial dynamic of losses (7.5%) and gains (11.6%) took place between 1985 and 2015. This behavior is related to the disappearance of native vegetation fragments in some sub-basins, as well as to afforestation, reforestation, and/or forest restoration in others. The Cerrado (a typical tropical savanna in South America), the most impacted natural biome of the Basin, decreased from 21.9% of the UPRB in 1985 (196,746 km2) to only about 5% of the whole UPRB area in 2015. Grassland areas, mostly used for livestock, decreased from 271,827 km2 (30.2%) to 229,007 km2 (25.5%). This net decrease was associated with a reduction of 160,830 km2 (17.8%) and the appearance of 118,010 km2 (13.2%) in new areas, previously occupied by tropical savannas in 1985. In conclusion, economic factors were the main drivers for land cover changes, especially agriculture and livestock activities, besides forestry and hydroelectric energy production. In addition, Grassland areas that predominated on the left banks of the UPRB in 1985 retreated with the advance of Cropland areas, mainly due to the expansion of sugarcane for ethanol production, a biofuel widely used in Brazil. In turn, pasture areas migrated to the right bank and occupied a significant part of the Cerrado. Finally, our results demonstrate that the transition dynamics among land cover classes can involve complex political-economical mechanisms that are not always captured by remote sensing

    Comparison of embryo yield and pregnancy rate between in vivo and in vitro methods in the same Nelore (Bos indicus) donor cows

    No full text
    To investigate why the preferred means to produce bovine embryos in Brazil has changed from in vivo to in vitro, we compared these two approaches in the same Nelore cows (n = 30) and assessed total embryo production and pregnancy rates. Without a specific schedule, all cows were subjected to ultrasound-guided ovum pick up (OPU)/in vitro production (IVP) and MOET, with intervals ranging from 15 to 45 d between procedures, respectively. To produce in vivo embryos, cows were superovulated and embryos were recovered nonsurgically from 1 to 3 times (1.4 +/- 0.6). whereas OPU/IVP was repeated from 1 to 5 times (3.2 +/- 1.2) in each donor cow during a 12-mo interval. Embryos obtained from both methods were transferred to crossbred heifers. on average. 25.6 +/- 15.3 immature oocytes were collected per OPU attempt. The average number of embryos produced by OPU/IVP (9.4 +/- 5.3) was higher (P 0.05) between in vivo and in vitro-derived embryos. We concluded that in Nelore cows, with an interval of 15 d between OPU procedures, it was possible to produce more embryos and pregnancies compared to conventional MOET. (C) 2009 Elsevier B.V. All rights reserved

    Recent Amazon Climate as background for possible ongoing and future changes of Amazon humid forests

    Get PDF
    Recent analyses of Amazon runoff and gridded precipitation data suggest an intensification of the hydrological cycle over the past few decades in the following sense: wet-season precipitation and peak river runoff (since ∼ 1980) as well as annual-mean precipitation (since ∼ 1990) have increased while dry-season precipitation and minimum runoff have slightly decreased. There has also been an increase in the frequency of anomalously severe floods and droughts. Here we extend and expand these analyses to characterize recent climate state and change, as a background for possible ongoing and future changes of these forests. The contrasting recent changes in wet and dry season precipitation have continued and are generally consistent with changes in catchment-level peak and minimum river runoff as well as a positive trend of water vapour inflow into the basin. Consistent with the river records the increased vapour inflow is concentrated to the wet season. Temperature has been rising by 0.7∘C since 1980 with more pronounced warming during dry months. Suggestions for the cause of the observed changes of the hydrological cycle come from patterns in tropical sea surface temperatures (SST's). Tropical and North Atlantic SST's have increased rapidly and steadily since 1990, while Pacific SST's have shifted from a negative Pacific Decadal Oscillation (PDO) phase (approximately pre 1990) with warm eastern Pacific temperatures to a positive phase with cold eastern Pacific temperatures. These SST conditions have been shown to be associated with an increase in precipitation over most of the Amazon except the south and south-west. If ongoing changes continue we expect these to be generally beneficial for forests in those regions where there is an increase in precipitation with the exception of floodplain forests. An increase in flood-pulse height and duration could lead to increased mortality at higher levels of the floodplain and, over the long term, to a lateral shift of the zonally stratified floodplain forest communities. Negative effects on forests are mainly expected in the south-west and south, which have become slightly drier and hotter, consistent with tree mortality trends observed at the RAINFOR forest plot census network
    corecore