79 research outputs found

    Estimating offsets for avian displacement effects of anthropogenic impacts

    Get PDF
    Biodiversity offsetting, or compensatory mitigation, is increasingly being used in temperate grassland ecosystems to compensate for unavoidable environmental damage from anthropogenic developments such as transportation infrastructure, urbanization, and energy development. Pursuit of energy independence in the United States will expand domestic energy production. Concurrent with this increased growth is increased disruption to wildlife habitats, including avian displacement from suitable breeding habitat. Recent studies at energy-extraction and energy-generation facilities have provided evidence for behavioral avoidance and thus reduced use of habitat by breeding waterfowl and grassland birds in the vicinity of energy infrastructure. To quantify and compensate for this loss in value of avian breeding habitat, it is necessary to determine a biologically based currency so that the sufficiency of offsets in terms of biological equivalent value can be obtained. We describe a method for quantifying the amount of habitat needed to provide equivalent biological value for avifauna displaced by energy and transportation infrastructure, based on the ability to define five metrics: impact distance, impact area, pre-impact density, percent displacement, and offset density. We calculate percent displacement values for breeding waterfowl and grassland birds and demonstrate the applicability of our avian-impact offset method using examples for wind and oil infrastructure. We also apply our method to an example in which the biological value of the offset habitat is similar to the impacted habitat, based on similarity in habitat type (e.g., native prairie), geographical location, land use, and landscape composition, as well as to an example in which the biological value of the offset habitat is dissimilar to the impacted habitat. We provide a worksheet that informs potential users how to apply our method to their specific developments and a framework for developing decision-support tools aimed at achieving landscape-level conservation goals

    Heating with biomass in the United Kingdom: Lessons from New Zealand

    Get PDF
    In this study we review the current status of residential solid fuel (RSF) use in the UK and compare it with New Zealand, which has had severe wintertime air quality issues for many years that is directly attributable to domestic wood burning in heating stoves. Results showed that RSF contributed to more than 40 μg m−3 PM10 and 10 μg m−3 BC in some suburban locations of New Zealand in 2006, with significant air quality and climate impacts. Models predict RSF consumption in New Zealand to decrease slightly from 7 PJ to 6 PJ between 1990 and 2030, whereas consumption in the UK increases by a factor of 14. Emissions are highest from heating stoves and fireplaces, and their calculated contribution to radiative forcing in the UK increases by 23% between 2010 and 2030, with black carbon accounting for more than three quarters of the total warming effect. By 2030, the residential sector accounts for 44% of total BC emissions in the UK and far exceeds emissions from the traffic sector. Finally, a unique bottom-up emissions inventory was produced for both countries using the latest national survey and census data for the year 2013/14. Fuel- and technology-specific emissions factors were compared between multiple inventories including GAINS, the IPCC, the EMEP/EEA and the NAEI. In the UK, it was found that wood consumption in stoves was within 30% of the GAINS inventory, but consumption in fireplaces was substantially higher and fossil fuel consumption is more than twice the GAINS estimate. As a result, emissions were generally a factor of 2–3 higher for biomass and 2–6 higher for coal. In New Zealand, coal and lignite consumption in stoves is within 24% of the GAINS inventory estimate, but wood consumption is more than 7 times the GAINS estimate. As a result, emissions were generally a factor of 1–2 higher for coal and several times higher for wood. The results of this study indicate that emissions from residential heating stoves and fireplaces may be underestimated in climate models. Emissions are increasing rapidly in the UK which may result in severe wintertime air quality reductions, as seen in New Zealand, and contribute to climate warming unless controls are implemented such as the Ecodesign emissions limits

    Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors

    No full text
    With increased awareness of the emissions of greenhouse gases (GHGs) and the significant contribution from the cement industry, research efforts are being advanced to reduce the impacts associated with concrete production and consumption. A variety of methods have been proposed, one of the most common being the replacement of cement as a binder in concrete with supplementary cementitious materials, such as fly ash (FA), which can have lower environmental effects. The use of FA can change the kinetics of the hydration reactions and, consequently, modify the evolution of the concrete strength over time. Yet the influence of designing structural elements to obtain the required strength at later ages has not been examined in terms of their influence on global warming potential (GWP) of concrete. This research investigates the influence of design age, in addition to mix proportions and geometric aspects, on the GWP associated with making beams, columns, and a concrete building frame. Findings suggest that while the GWP for beams is not highly dependent on concrete mixture strength, the GWP for columns is dependent on strength, thus the influence of required strength at later ages influences GWP of making columns more so than beams. For the concrete frame analyzed, a potential 45% reduction in GWP, depending on mix proportions and design age, was found. Using the findings from this research, the GWP associated with production of concrete in California could be reduced by approximately 1.8 million metric tons of CO2-eq emissions, equivalent to approximately 2% of all industrial GHG emissions in California
    corecore