21 research outputs found

    DOs and DON'Ts for using climate change information for water resource planning and management: guidelines for study design

    Get PDF
    Water managers are actively incorporating climate change information into their long- and short-term planning processes. This is generally seen as a step in the right direction because it supplements traditional methods, providing new insights that can help in planning for a non-stationary climate. However, the continuous evolution of climate change information can make it challenging to use available information appropriately. Advice on how to use the information is not always straightforward and typically requires extended dialogue between information producers and users, which is not always feasible. To help navigate better the ever-changing climate science landscape, this review is organized as a set of nine guidelines for water managers and planners that highlight better practices for incorporating climate change information into water resource planning and management. Each DOs and DON'Ts recommendation is given with context on why certain strategies are preferable and addresses frequently asked questions by exploring past studies and documents that provide guidance, including real-world examples mainly, though not exclusively, from the United States. This paper is intended to provide a foundation that can expand through continued dialogue within and between the climate science and application communities worldwide, a two-way information sharing that can increase the actionable nature of the information produced and promote greater utility and appropriate use

    State of the Climate in 2016

    Get PDF

    The application of inverse-dispersion and gradient methods to estimate ammonia emissions from a penguin colony

    Get PDF
    Penguin colonies represent some of the most concentrated sources of ammonia emissions to the atmosphere in the world. The ammonia emitted into the atmosphere can have a large influence on the nitrogen cycling of ecosystems near the colonies. However, despite the ecological importance of the emissions, no measurements of ammonia emissions from penguin colonies have been made. The objective of this work was to determine the ammonia emission rate of a penguin colony using inverse-dispersion modelling and gradient methods. We measured meteorological variables and mean atmospheric concentrations of ammonia at seven locations near a colony of Adélie penguins in Antarctica to provide input data for inverse-dispersion modelling. Three different atmospheric dispersion models (ADMS, LADD and a Lagrangian stochastic model) were used to provide a robust emission estimate. The Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to compare the difference between the two approaches. In addition, the aerodynamic gradient method was applied using vertical profiles of mean ammonia concentrations measured near the centre of the colony. The emission estimates derived from the simulations of the three dispersion models and the aerodynamic gradient method agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per day (95% confidence interval: 0.4–2.5 g ammonia per breeding pair per day). This emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion of the penguins, which agrees well with that estimated from a temperature-dependent bioenergetics model. We found that, in this study, the Lagrangian stochastic model seemed to give more reliable emission estimates in ‘forwards’ mode than in ‘backwards’ mode due to the assumptions made

    Climate change effects on water allocations with season dependent water rights

    No full text
    Appropriative water rights allocate surface water to competing users based on seniority. Often water rights vary seasonally with spring runoff, irrigation schedules, or other non-uniform supply and demand. Downscaled monthly Coupled Model Intercomparison Project multi-model, multi-emissions scenario hydroclimate data evaluate water allocation reliability and variability with anticipated hydroclimate change. California\u27s Tuolumne watershed is a study basin, chosen because water rights are well-defined, simple, and include competing environmental, agricultural, and urban water uses representative of most basins. We assume that dedicated environmental flows receive first priority when mandated by federal law like the Endangered Species Act or hydropower relicensing, followed by senior agricultural water rights, and finally junior urban water rights. Environmental flows vary by water year and include April pulse flows, and senior agricultural water rights are 68% larger during historical spring runoff from April through June. Results show that senior water right holders receive the largest climate-driven reductions in allocated water when peak streamflow shifts from snowmelt-dominated spring runoff to mixed snowmelt- and rainfall-dominated winter runoff. Junior water right holders have higher uncertainty from inter-annual variability. These findings challenge conventional wisdom that water shortages are absorbed by junior water users and suggest that aquatic ecosystems may be disproportionally impaired by hydroclimate change, even when environmental flows receive priority

    West African gas pipeline (WAGP) project: Associated problems and possible remedies

    No full text
    Global focus is gradually turning away from crude oil as a major source of energy to natural gas due to its abundant availability, environmental friendliness and cost effectiveness, this has effectively increased the transboundary pipeline networks with minimal consideration to the impact at which the offshore segment of such projects could have on the environment. This paper considers Nigeria's present engagement in transboundary transportation of 11.3 billion cubic meters per day (11.3 BCMPD) of natural gas to Benin, Togo and Ghana for thermal and industrial uses through a 1,033 km pipeline network out of which 617 km is a submerged offshore pipeline network. The study is necessitated by the alarming frequency at which hydrocarbon pipeline failure occurs in Nigeria with the resulting economy, environmental and human consequences. It was discovered that any failure along the offshore segment of the pipelength poses high risk of hydrate formation and dissolution of some constituents which could result to problems ranging from behavioral nature (e.g. fish excitement, increased activities and scattering in the waterbody) to chronic poisoning, fire outbreak, loss of human lives and livestock and climate change. Development of pragmatic management scheme, robust leak detection model and predictive model on natural gas flow pattern in waterbody are recommended. © 2009 Springer Netherlands
    corecore