72 research outputs found

    MASTREE+ : time-series of plant reproductive effort from six continents

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    MicroRNA-145 Regulates Human Corneal Epithelial Differentiation

    Get PDF
    Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium.Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8) expression in both human corneal epithelial cells and primary CEPCs.We found expression of miR-143/145 cluster in human corneal epithelium. Our results also showed that miR-145 regulated the corneal epithelium formation and maintenance of epithelial integrity, via ITGB8 targeting

    Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope

    Get PDF
    [EN] The Hamamatsu R12199-02 3-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum eÿciency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), France; 'Helmholtz Alliance for Astroparticle Physics' funded by the Initiative and Networking Fund of the Helmholtz Association, Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Agence de l'Oriental and CNRST, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; National Authority for Scientific Research (ANCS), Romania; Plan Estatal de Investigacion (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain.Aiello, S.; Akrame, SE.; Ameli, F.; Anassontzis, EG.; Andre, M.; Androulakis, G.; Anghinolfi, M.... (2018). Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation. 13:1-17. https://doi.org/10.1088/1748-0221/13/05/P05035S11713Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anvar, S. (2014). Deep sea tests of a prototype of the KM3NeT digital optical module. The European Physical Journal C, 74(9). doi:10.1140/epjc/s10052-014-3056-3Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anton, G. (2016). The prototype detection unit of the KM3NeT detector. The European Physical Journal C, 76(2). doi:10.1140/epjc/s10052-015-3868-9Herold, B., Kalekin, O., & Reubelt, J. (2011). PMT characterisation for the KM3NeT project. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 639(1), 70-72. doi:10.1016/j.nima.2010.09.018Timmer, P., Heine, E., & Peek, H. (2010). Very low power, high voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope. Journal of Instrumentation, 5(12), C12049-C12049. doi:10.1088/1748-0221/5/12/c12049Mollo, C. M., Bozza, C., Chiarusi, T., Costa, M., Capua, F. D., Kulikovskiy, V., … Vivolo, D. (2016). A new instrument for high statistics measurement of photomultiplier characteristics. Journal of Instrumentation, 11(08), T08002-T08002. doi:10.1088/1748-0221/11/08/t08002Adrián-Martínez, S., Ageron, M., Aiello, S., Albert, A., Ameli, F., Anassontzis, E. G., … Anton, G. (2016). A method to stabilise the performance of negatively fed KM3NeT photomultipliers. Journal of Instrumentation, 11(12), P12014-P12014. doi:10.1088/1748-0221/11/12/p12014Lubsandorzhiev, B. K., Vasiliev, R. V., Vyatchin, Y. E., & Shaibonov, B. A. J. (2006). Photoelectron backscattering in vacuum phototubes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 567(1), 12-16. doi:10.1016/j.nima.2006.05.04

    Epithelial cell polarity: a major gatekeeper against cancer?

    Get PDF
    The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis. Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity. Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation. Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical–basal polarity and cell–cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring the progression of tumours from benign to malignancy

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family

    Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection

    Get PDF
    Brouwer et al. present preclinical evidence in support of a COVID-19 vaccine candidate, designed as a self-assembling two-component protein nanoparticle displaying multiple copies of the SARS-CoV-2 spike protein, which induces strong neutralizing antibody responses and protects from high-dose SARS-CoV-2 challenge.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication i

    Étude structurale du filament des recombinases par des approches de spectroscopie optique et de modélisation moléculaire

    No full text
    La recombinaison homologue est un processus universel d'échange d'un brin d'ADN entre deux molécules de séquences équivalentes. Elle est catalysée par des protéines conservées depuis les phages jusqu'aux hommes : les recombinases (RecA Eubactérienne, RadA Archae et Rad51 Eucaryote). Les recombinases sont actives sous la forme d'un filament formé sur l'ADN simple-brin en présence d'ATP. Elles hydrolysent l'ATP et il existe deux conformations du filament associées à l'état du co-facteur (ATP/ADP). Dans la première partie de ce travail nous avons mis en évidence les similitudes existantes entre les interfaces protéine-protéine des filaments de recombinases eucaryotes, inconnues jusqu'alors, et eubactériennes par une approche de spectroscopie optique. Dans un second temps nous avons mis en place une stratégie de modélisation moléculaire qui nous permet de proposer, pour la première fois, des modèles de chacune des conformations des filaments.Homologous recombination is the universally conserved process of strand exchange between two DNA molecules of similar sequences. It is catalysed by a family of proteins found from phages to human : recombinases (Eubacterian RecA, Archaeal RadA and Eucaryotic Rad51). Recombinases are active as a filament formed on single-strand DNA in the presence of ATP. They hydrolyze ATP and two conformational states of the filament exist, each associated with one type of co-factor (ATP/ADP). In the first part of this work, using optical spectroscopy, we proved that the previously unknown protein-protein interface in the eucaryotic recombinase filament to have similarities to that of eubacterian recombinase. Secondly we computationaly modelled each of the filament conformation. This is the first time that such a model of the two states has been proposed at the molecular scale.NANTES-BU Sciences (441092104) / SudocSudocFranceF
    corecore