8,346 research outputs found

    Quantum Spin Formulation of the Principal Chiral Model

    Get PDF
    We formulate the two-dimensional principal chiral model as a quantum spin model, replacing the classical fields by quantum operators acting in a Hilbert space, and introducing an additional, Euclidean time dimension. Using coherent state path integral techniques, we show that in the limit in which a large representation is chosen for the operators, the low energy excitations of the model describe a principal chiral model in three dimensions. By dimensional reduction, the two-dimensional principal chiral model of classical fields is recovered.Comment: 3pages, LATTICE9

    Cervical spine instability in rheumatoid arthritis

    Get PDF
    Atlanto-axial instability in the rheumatoid patient is discussed. Special reference is made to the importance of diagnosing this potentially lethal condition by means of routine flex ion and extension radiographs of the cervical spine. Treatment by means of occipito-C1-C2 posterolateral fusion is recommended

    Edge excitations and Topological orders in rotating Bose gases

    Get PDF
    The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are studied. Using exact diagonalization of small systems, we compute the energies and number of edge excitations, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the state identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An experimental way of detecting these correlated states is also discussed.Comment: Results extended to larger systems. Improved presentatio

    Quantum Link Models with Many Rishon Flavors and with Many Colors

    Get PDF
    Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N_c limit of this model. In the 't Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.Comment: Lattice2001(theorydevelop), poster by O. Baer and talk by B. Schlittgen, 6 page

    Study of the 2-d CP(N-1) models at \theta=0 and \pi

    Full text link
    We present numerical results for 2-d CP(N-1) models at \theta=0 and \pi obtained in the D-theory formulation. In this formulation we construct an efficient cluster algorithm and we show numerical evidence for a first order transition for CP(N-1\geq 2) models at \theta = \pi. By a finite size scaling analysis, we also discuss the equivalence in the continuum limit of the D-theory formulation of the 2-d CP(N-1) models and the usual lattice definition.Comment: 3 pages, 2 figures. Talk presented at Lattice2004(spin), Fermilab, June 21-26, 200

    Conductance oscillations in strongly correlated fractional quantum Hall line junctions

    Get PDF
    We present a detailed theory of transport through line junctions formed by counterpropagating single-branch fractional-quantum-Hall edge channels having different filling factors. Intriguing transport properties are exhibited when strong Coulomb interactions between electrons from the two edges are present. Such strongly correlated line junctions can be classified according to the value of an effective line-junction filling factor n that is the inverse of an even integer. Interactions turn out to affect transport most importantly for n=1/2 and n=1/4. A particularly interesting case is n=1/4 corresponding to, e.g., a junction of edge channels having filling factor 1 and 1/5, respectively. We predict its differential tunneling conductance to oscillate as a function of voltage. This behavior directly reflects the existence of novel Majorana-fermion quasiparticle excitations in this type of line junction. Experimental accessibility of such systems in current cleaved-edge overgrown samples enables direct testing of our theoretical predictions.Comment: 2 figures, 10 pages, RevTex4, v2: added second figure for clarit

    X-ray and UV observations of nova V598 Puppis between 147 and 255 days after outburst

    Full text link
    Aims: The launch of Swift has allowed many more novae to be observed regularly over the X-ray band. Such X-ray observations of novae can reveal ejecta shocks and the nuclear burning white dwarf, allowing estimates to be made of the ejecta velocity. Methods: We analyse XMM-Newton and Swift X-ray and UV observations of the nova V598 Pup, which was initially discovered in the XMM-Newton slew survey. These data were obtained between 147 and 255 days after the nova outburst, and are compared with the earlier, brighter slew detection. Results: The X-ray spectrum consists of a super-soft source, with the soft emission becoming hotter and much fainter between days ~147 and ~172 after the outburst, and a more slowly declining optically thin component, formed by shocks with kT ~ 200-800 eV (corresponding to velocities of 400-800 km s^-1). The main super-soft phase had a duration of less than 130 days. The Reflection Grating Spectrometer data show evidence of emission lines consistent with optically thin emission of kT ~100 eV and place a limit on the density of the surrounding medium of log(n_e/cm^-3) < 10.4 at the 90 % level. The UV emission is variable over short timescales and fades by at least one magnitude (at lambda ~ 2246-2600 angstrom) between days 169 and 255.Comment: 6 pages, 5 figures, accepted for publication in A&

    Degeneracies in the length spectra of metric graphs

    Full text link
    The spectral theory of quantum graphs is related via an exact trace formula with the spectrum of the lengths of periodic orbits (cycles) on the graphs. The latter is a degenerate spectrum, and understanding its structure (i.e.,finding out how many different lengths exist for periodic orbits with a given period and the average number of periodic orbits with the same length) is necessary for the systematic study of spectral fluctuations using the trace formula. This is a combinatorial problem which we solve exactly for complete (fully connected) graphs with arbitrary number of vertices.Comment: 13 pages, 7 figure
    • …
    corecore