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We present a detailed theory of transport through line jonstformed by counterpropagating single—branch
fractional-quantum—Hall edge channels having differélindi factors. Intriguing transport properties are ex-
hibited when strong Coulomb interactions between elestfoom the two edges are present. Such strongly
correlated line junctions can be classified according toviiiee of an effective line—junction filling factar
that is the inverse of an even integer. Interactions turrt@affect transport most importantly for= 1/2 and
v = 1/4. A particularly interesting case is= 1/4 corresponding to, e.g., a junction of edge channels having
filling factor 1 and1/5, respectively. We predict its differential tunneling cacthnce to oscillate as a function
of voltage. This behavior directly reflects the existencen@fel Majorana—fermion quasiparticle excitations
in this type of line junction. Experimental accessibility such systems in current cleaved—-edge overgrown
samples enables direct testing of our theoretical prexfisti

I. INTRODUCTION arena for novel correlation effects is opened up when the edg
channels forming the junction belong to fractional-QH sam-

One—dimensional (1D) electron systénigve long been ples: Forthe case of a disordered junction, these have heen i
the focus of theoretical and experimental research. llyitia Vestigated in RefsL[28.29]. A related study for a cleanesyst
theorists studied them as rare examples of exactly solublgf tu_nne_I—coupIed:opropagatmgfracuon?l—QH edge chan-
interacting many—body syster@@# They served as a basis NelS in bilayers was performed recentfy’
for the development of powerful new theoretical tools such Here we consider the situation where the single—branch
as bosonizatict.” and refermionizatichtechniques. Due edge channels forming the line junction have opposite chi-
to their intriguing non—-Fermi-liquid properties, intetiag  rality and belong to QH systems with fractional filling facto
1D electron systems are classified within the distinct phed/(m;+1) andl/(my+ 1) with even integersy; # mo. We
nomenology ofLuttinger—liquid behavior® Eventually, real- assume the junction region to be clean and of finite length
izations of quasi—1D electron systems were found in metalli L, having edge—channel leads attached that contact to four
materials with strongly anisotropic resistivity Recent fabri-  reservoirs where transport measurements can be performed.
cation of clean long semiconductor quantum witess well ~ This sample geometry is experimentally realizable in rédgen
as carbon nanotub¥screated new possibilities to observe grown corner junctions between mutually orthogonal 2D-elec
Luttinger—liquid behavior in experiment. tron systemg1:24To enable tunneling transport between them,

An especially versatile type of 1D electron system is realthe two edge channels have to be close enough in space,
ized at the boundary of two—dimensional (2D) electron syswhich typically facilitates strong interchannel Coulommiteir-
tems in a strong perpendicular magnetic field. At particu-actions within the junction region. This turns out to signifi
lar values of the filling facton = 2m/?n,p, wherel = cantly affect the junction conductance when the effectile fi
V/hic/[eB] is the magnetic length andp the electron sheet ing factors = 1/my — my| is equal tol /2 or 1/4. Using
density, the 2D system becomes incompressible in theZ8ulk, Posonization and refermionization techniques, we sucfmed
giving rise to quantized values of the Hall resistance. s th both cases in mapping the originally strongly interacting+
regime where the quantum Hall (QH) eff¥#®is observed, Jjunction system onto a system of noninteracting fermiows. F
low—lying excitations exist at the sample bounddnwhose 7 = 1/2, these new quasiparticles are fictitious chiral spin—
electronic properties are analogous to chiral versionsusf L 1/2 fermions which have no direct physical meaning. Only
tinger liquids when the filling factor at the incompresstgils ~ observables related to their pseudo—spin degree of freedom
fractionall? Unlike the more conventional types of quasi—1D correspond to measurable quantities. In the other case of
metals, the properties of edge excitations in a QH sample can = 1/4, two Majorana fermions having different velocities
be easily tailored. Simple adjustment of the magnetic field+ andv_ turn out to be the fundamental particle excitations
can create different QH states in the bulk of the 2D systenin the line junction. The existence of a velocity splitting d
with concomitant change in the edge’s chiral—Luttingeyid rectly results in osc_illations of the differential jundnicn:on-
properties. Advanced nanostructuring techniques enhkle t ductance as a function of the transport voltage, which can be
creation of novel tunneling geometr84%22:2%inyolving QH de_tected experimentally. Its observa_uon wquld _conf_lrm the
edges as well as line junctions between tHé&%:24While line ~ existence of yet another type of exotic quasiparticle inHow
junctions between counterpropagating chiral edge channeflimensional systems.
having the same integer filling factor closely mirror preper  This article is organized as follows. We start, in Jek. I,
ties of conventional quasi—1D systefi€8:27an entirely new by specifying the model for an isolated QH line junction and
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apply the techniques of bosonization and refermionization the charge densities and, hence, respective bosonic figlds
obtain its solution. The emergence of new quasiparticléls wi and¢,,, describing the two edges are coupled via interactions
be elucidated. In the following Sdcllll, the coupling of B and tunneling. The total Hamiltonian of the line junction is
line junction to external edge—channel leads is considéted  thus given byH; = H\ | + Hn, Where

derive relations between the chemical potentials in thddea

to quantities describing the line junction that take fult@ant Hu = Hpy + Hp, + Hine (3a)
of charging effects. These results are then applied in[S&c. | Vi Vmy 3
to calculate transport properties of line junctions, wigntjz- Hpt = Y—5— U/ dx OrPm, Oxm, , (3b)

ular focus on the casegs= 1/2 andv = 1/4. A summary

and conclusions are presented in £dc. V. This article pesvid 2 '

full details of and extends results reported in a previowstsh Huwn = /7A dx {“pjmwmz + H-C-} : (3¢)

publication32 2
Here we have assumed equal strengths for intra— and inter—
channel interactions which is the case for typical line junc

Il. EFFECTIVE LOW-ENERGY MODEL FOR A tions.
QUANTUM-HALL LINE JUNCTION The partH,, of the line—junction Hamiltonian can be diag-

onalized in a straightforward manner. For the cage= m.,

A single branch of low-lying edge excitations exists in the familiar phase—field descriptidof a nonchiral Luttinger
QH samples at the Laughlin series of filling facters =  liquid is recovered in the typical situation where the Conito
1/(m + 1). These form chiral 1D electron systems that canmatrix element dominates the bare velocities (j = 1, 2).
be described? using the bosonizatiGdapproach, by a single Addition of the tunneling termHy,, in its bosonized form
chiral boson fields,,, (z). The (suitably normal-ordered) elec- yields an orthodox sine—Gordon model whose properties have
tronic charge density at a locatieralong the edge is given by been studied extensive®.We do not discuss this nonchiral

om(2) = Al (2)hm (2): = /Um Oudm(z)/(27). Its dynam-  case here any further. Instead, we focus on situations where

|cs is determined by the Hamiltonian my # me. Then the line junction is intrinsically chiral, also

b in the limit of strong Coulomb interactio® Instead, we can

H,, = :m /da: (az¢m)2 . (1) write H; as a sum of independent contributions from two
T chiral normal modes,

The edge velocity,,, is the sum of a one—electron contri- _—_—
bution vg, which is proportional to the slope of the exter- ;| = _/ dx {'Ua (D5 6a)” + vp (896%)2} L@
nal potential confining electrons in the QH sample, and an dm )L

interaction contribution,,,U/(27h) that typically dominates
in the long—wave—length lim# The chirality of a QH edge N N
is manifested by the fact that disturbances in the elecr:tromtlon relatlonigﬁa ?r(urz iaéb(raégisgclﬁ(r;ﬁ?;\?hgerg tgezb)a\:\gtg dae
charge density propagate only in one particular directiont® Xb 9 9
along the sample perimeter. Mathematically, this is exqEes velocities are much smaller than the Coulomb matrix element
by the canonical commutation relatiohs,, (z) , ¢m(z')] = we find the expressions

The normal-mode boson fieldg and¢y, obey the commuta-

ix msgnz — «') for the boson field),,,. The chirality param- [Vm1 = Vm2|U U, UFL + Uiy Uk2
etery assumes the valuel (—1) for right(left)-movers. An Va = ol [Vt — V| 5 (5a)
especially useful property of chiral 1D systems is the com-
: . P . . _ VUmyUR1 + Vim, VF2
plete equivalence of their descriptions in terms of bosonic v, = —/——m— (5b)
and fermionic degrees of freedd™? For single-branch QH Vi1 = Vmz|
edges, this is expressed by the bosonization idéAtiythe ~ Xb = —X1S9MVm; — Vi) (5¢)
electron annihilation operator, 4o = (VVmr = €3/Vmz)Omy + (/Vmy — €3/Vimy) ¢m2’5d)
-
Y . d’m(x) |Vm1 Vm2|

Y (%) = V/Zm Fm eXp{“” zrx } - @ gy — WTmat VT )0m & (i /Pma) Imsey

Here z,, is a normalization constant, and denotes the [V, = Vi, |

guiding—center location of electrons at the Fermi enertd T ore we have defined a small parameter (of ofdgs /)
Klein factorF,,, acts as a ladder operator for the electron num-

ber and ensures fermionic statistics of bosonized elecipen VVmiVma UF1 + Up2
erators from different QH edges or edge branéhes. V) — Vm,|  a

We are interested in studying a QH line junction that is
formed when two parallel fractional-QH edge channels withand neglected terms of quadratic orde &%
opposite chirality are coupled by uniform tunneling along a After bosonization, the tunneling Hamiltonian reads
finite length L. Such a junction can be realized, e.g., by

L
fabricating two 2D electron systems that are laterally sepa 7 _ o1y 7 / 2 dz cos ¢n A
: ; . : 4 = 2|t|/ —tr , (7
rated? or form a corner junctio:2# In the junction region, tn = 2{tly/Zm Zms L N )



3

where we have absorbed the phase of the tunneling matriarder in small quantities. As we will see below, this is gen-

element into the neutral-mode bosonic field erally the relevant physical situation and even requireithén
caser = 1/4. In what follows we restrict ourselves to the

o = Y2 Prs + Vi Pma xiVoarg(t) . (8) @pproximatiore — 0 (corresponding td/ — oc). We note,

[Vimy — Vins | however, that corrections to leading ordetican be included

L perturbatively, yielding small corrections to our final uks
The abbreviation = vy, vim, /[Vm, = Vm,| = 1/lm1 —maz|  which do not affect them significantly. The Hamiltonian of
has the meaning of an effective junction filling factor, andthe line junction is then diagonalized, to a good approxima-

A =Y; — Y, is a measure for the width of the line junc- tion, by the normal modes, and ¢, of Hi,, and we find
tion. To first order in small quantities defined above, the-neu (1)

tral mode is given in terms of the normal modesif, as Hy= Ha+ Hy"", where
on = ¢p — eda. (Here we have used the freedom to redefine

the normal—-mode fields by a constant shift to absorb the phase Tiva 5 )
of the tunneling matrix element if.) If we furthermore as- Hy = E/ L dz (Ouda)” (9a)
sume weak enough tunneling such théatk U, then terms T2
in Hyn that couple the normal modes &f | are of second
|
(1) [*% h ¢ A
i Up b
H7' = /_15 dx {E (D20b)” + 2|t|\/Zms Zmy COS (ﬁ + xﬁ)} . (9b)

The fast normal mode, labeled a, turns out to be free and urthe kind expressed in EQ1(2). Namely, it is possib to

affected by tunneling. This is quite clear physically, ais th map the rather complicated chiral bosonic field theory fer th
mode is closely related to the total charge density in the lin slow mode onto that of noninteracting fictitious fermionse W
junction (p = gfa), which is left invariant in any tunneling proceed to show this in the following two subsections, as the
process. As we are only interested in studying tunnelingstra refermionized description of the slow—mode dynamics forms
port, we do not consider the fast mode any further. The slovthe basis for our subsequent transport calculations.

mode, being approximately equal to the neutral mode which A, Case’ = 1/2: Fictitious chiral fermion tunneling
measures thdifferencein electron densities for the two edge
branches forming the junction, has a dynamics that is styong

1

1) To solve the chiral sine—Gordon Hamiltonian with= 1,2,
influenced by the tunneling term. Its Hamiltoni&f),”’ is  we introduce — for purely mathematical reasons — a ghost
that of a chiral sine-Gordon model which has been studied ifield n () that has the same chirality and dynamics as the slow
different contexts beford:2” Such theories can be classified modegy. It is then possible to define a pair of fictitious chiral
according to the different values of the effective junctiitin fermions, distinguished by a pseudospin degree of freedom
ing factor that is given here by the inverse of even integerso =T, | using the bosonization identity

For1/ > 4, the cosine term has been shé#to be irrelevant

in a renormalization—group sense. This means that it does no

alter the excitation spectrum of the free chiral boson thé@or V() = /20 Fo exp {iXb
any important way and can therefore be treated as a perturba-

tion. The situations whei/> = 4 and2, however, turn out

to be different. While no perturbative approach is permissi In this new notation, the HamiltoniaHéQ) of the slow mode
for these cases, the effect of the cosine term can nevesthelerepresents tunneling between the two flavors of fictitious
be calculated, even exactly, using bosonization idestitie  fermions:

n(x) + odp(x)
T} . (10)

L
1Y = / " de {hvawg(_ixbaz)q/ﬁfmlmQ Uiy emixwra/t +H.C.}} . (11)

Myl

The tunneling strength,,, ., = [t|\/Zm, 2m,/ 2o is generally  the matrix element for tunneling between the original line—
different, because of chiral-Luttinger—liquid propesti'om  junction edge channe®s.Physical observables are expressed



in terms of pseudospin-related quantities, while the ahargfield ¢y:
degree of freedom for fictitious fermions remains hiddemfro

measurement. For example, the spin density and the density ) A
associated with the slow mode are equivalent: o() = /2o Fp exp | iXp Top T Pb(2) )
\I/%IJT — \IJI\IJL =120, = ?}”ﬁbb . (12)  The densityg, of the slow mode is related to the normal-
2 ordered densitngwb: of the new fictitious fermion via
The representation oHéQ) in terms of the fictitious chiral A
pseudo—spin—1/2 fermion, being quadratic in this field, @sak op = Oafb _ wbwb ) (14)
it possible to treat transport straightforwardly. ThisIviié 2m

discussed below in Secti@nIV A. ) )
With the help of the relatich

B. Caser = 1/4: Velocity—split Majorana fermions . A
P=1 ymePi e P i0, thy = —2mxb 2 Fiy €Xp {ZXb {2% +x p} } . (15)

A bosonization identity of the type given in El (2) can be
used to define a Dirac fermion in terms of the chiral bosorthe Hamiltonian of the slow mode can be rewritten as

i = [ e {rotl-ina0n)in — han s o+ 5 [vn-inadyin +el-ineid]} @9

where the tunneling matrix element has been absorbed intoilayersC It is reminiscent of the spin—charge separation ex-
the velocity parametety = [t|\/Zm,zm,/7hzZ. In the  pected to occur in interacting 1D electron systérihe rep-

representation of the fictitious fermiafy, Hé4) looks like  resentation oth(,4) in terms of the fictitious noninteracting
the Bogoliubov—de Gennes Hamilton?8rof a spinless p— Majorana fermions enables treatment of transport throbgh t
wave superconductor. It differs from similar systems cdnsi line junction, which will be shown below in S€c. TV B. Diag-
ered previous§24° by its chiral 1D nature. We do not ex- onalization ofH* is straightforward. Its spectrum has two
plicitly pursue the superconducting analogy here any &rth branches,

(although the formalism employed below could be phrased

within such a framework). Instead, we use the fact that thke re Ey.+ = hyok (vb + o /1 + r%) , (19)
and imaginary parts of a Dirac fermion are Majorana fermions
and define fieldg. = 51 via with 7. = wvwA/(nk¢?). The corresponding eigenstates
; are given, using a spinor notation in the basis of Majorana
€, = Vb + Uy ’ (17a) fermions¢, , as
\/5 &+ Ck ik
_ Pp — wﬁ, < I > - ( 1XbSk ) e (20a)
& = : . (17b) +
V2i ¢ ;
( +) _ ( szk) ikx ) (20b)
Note that: wgzﬁb = 1£,&_. The expression for the Hamilto- &) Ck

nian of the slow mode reads Here we used the abbreviations

Hé4)—/ { Zw& ixeda)Er — hvbA§+§} Ck}_ V1i+ritl
0o AN

with different velocitiesv, = v, + rv; for the two Majo-

rana fields. Hence, while the slow mode is characterized by a

single velocityv,, tunneling leads to the generation of two Ill.  TUNNELING CURRENT, CHEMICAL POTENTIAL,

different velocities for the resulting quasiparticles ttiarn AND COUPLING TO VOLTAGES

out to be Majorana fermions. A dynamically generated ve-

locity splitting of this type has been found before in turnel  To be able to calculate conductances, it is necessary to trea
coupled interacting quantum wirg€¢243and quantum-Hall the nonequilibrium situation where a finite voltage is aqli

(21)
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to the line junction. This requires proper definition of oper above, i.e., for smalt [see Eq.[[B)], we find the following
ators for currents and chemical potentials within the jiomct expression for the transport current through the line jiomct
region, which we set out to do in the first part of this section.
Our results are then applied to relate these quantitiestér-ex
nally adjustable lead voltages.
(L) 20t A
A standard calculation yields the expression for the tunnel 7 X1— /Zm Zma d:c gin [ = + z— | . (23)
e g 02
ing current flowing from edge channel 1 to edge channel 2 -L
within the line junction as

( It comes as no surprise that the current, as the tunneling
IL=— dx {t —H.c.} . 22 e '
J h/é v { hn Yma } (22) Hamiltonian, depends only on the slow normal mode. Hence,
only the latter features in our transport calculation. Dafin
After bosonization, and within the same approximationgluse the spatially varying partial current

/
I( )( )=x1 |\/|_‘/zm1zm2 /é dr' sin <¢b\§a§:) —|—x’%> sgn(z — a') (24)
i (%) _ Integrating it, and observing the relatiofv-L [ op =
turns out to be useful for later. Obviously,”’(L/2) = (])9 g g dr J Ob
_Iéﬁ)(_L/2) = IJ(E)/(Q\/E) IJ v Sgn(l/m1 — sz), we find
The local chemical potential of the slow normal mode can
be defined in the usual w&as the functional derivative of the I I (1)
Hamiltonian with respect to densitysS(x) = §Hy/don(x). ) (—) — (——) =-2thx1 2= ,  (30)
Using the commutation relations for chlral boson fieldssit i 2 2 7
straightforward to prove that,¢p is canonically conjugate to
ob, and therefore and comparison with Eq€_R7) yields
60
0(7) w(f)-a(-%)=n @)

for an arbitrary functionalD. Application of this identity

ields an expression for the local chemical potential, - . _ _
y P P The periodic boundary condition expressed in Egl (31) is a

@ (1) nontrivial property of the stationary state that enablesous
pp (x) = 2mh g voon() = x1 Iy (x) ¢ . (26)  treatthe line junction as separate from any edge—charaus le
that couple it to external reservoirs. The effect of externa
As a special case of this equation, we find the chemical potenvoltages will be to set the appropriate valueggfconsistent

tials at the endpoints of the junction to be with the valuel; for the line—junction current. A derivation of
(2) these relations will be presented in the following parabgsap
M(b.]) i£ — 271 { oo i£ - x1ly" . @ Edge c.hann_els forming the line junction typically exi;t be-
2 2 VA yond the junction region but are not coupled anymore via tun-

neling or interactions. These incoming and outgoing edge
The continuity equation for the slow—mode density can béranches serve as noninteracting leads that couple the junc

derived in a similar way, tion to external reservoirs with experimentally contrblia
p chemical potentials. (See the figure in Ref.|[32] and Eg. 1
_ below for illustration.) The Hamiltonian for the lead reg®
— o0 = Or00+ = |Hj, , 28a ) :
ar & e h[ ) Qb} (282) |x| > L/2 is therefore given by that of two uncoupled edges;

He = H,,,, + H,,,,. As the separate chiral edge densities for
each edge branch are just linear combinations of the dessiti
0a @nd gy that are the normal modes in the junction, we can
In the stationary limit wher@, o, = 0, Egs. [Z6) and{Z8b) write down an expression fdie in terms of the latter. In the
imply the exact relation limit of strong intra—edge Coulomb interactions, whichtis t
d physically relevant situation that we have been consideaih
31#53) = 27mhxp PG (29) along, itreads

= Oropb+ Xv0x {vbgb—mfég)} . (28b)
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B 2|Vm1 - Vm2| |z|>%

He dx {(V72711 + ng)gg + 2V, Vi, Q% = 2/VmqVm, (Vm, + sz)QaQb} . (32)

While the a and b modes are certainly not normal modes in th&olled by attachment to external reservoirs, namely tihase
lead region, it is nevertheless possible to define their ate@m ing chiral edge—density waves propagatiwgayfrom a reser-
potentials viau{)(z) = §He/doap(x). As He is a nondiago-  voir. We adopt the convention that the incoming (outgoing)
nal quadratic form when expressed in termgodndo,, each  edge lead for < —L/2is labeled 1 (4), whereas the incom-
of the chemical potentials® and ;" depends on both den- ing (outgoing) edge lead far > L/2is labeled 3 (2). (See
sities. In other words, there exists a finite cross—capamita Fig.[.) We find then from Eqd(B3)
between the a and b modes in the lead region. Re—expressing e
1apin terms of the original chiral edge densities, we find uf) ) SeL = Xb Vi (u1/2 - u4/3) . (34)
z 2
@ — YmiOmi — VmaOms WUy — Vi) (338) Requiring continuity of the chemical potentigls, at the
u [Vm: — Vi | B\Wm, = Yma) lead—junction interfaces, and using Eds] (2I21 (31) &l (5¢
as well as the constancy @f, throughout the line junction,
= Vi (0m; — Omy) 58NV, — Vmy) , (33b)  we find the relations

4mhxp vplb = \/E(Ml — p3 + p2 — pa) ,(35a)

U

where again terms of ordehave been neglected. The expres-

sions given in EqI{33) are useful because the local chemical 2h IJ(%) R

potential in each of the chiral edge branches within the lead A —v(p1 + p3 — p2 — pa) , (350)
region is directly related to the local chiral edge density i " e

that branch vig; = U g;, within the limit of strong intra— Vi, (B1(a) = B2(3)) = Vima (Ha(1) — H3(2)) - (35¢)

edge Coulomb interactions considered here. Experimgntall 4o e we used a compact notation in EG{35¢) to show the
two of the four lead branches’ chemical potentials are cong,qag corresponding to both line—junction chiralitigs —

+(—)1 in one line. Straightforward elimination yields an
a ml equation for the voltage drop across the junction,

1

2 M1 M3 Xb _ Vi, Vo (]E)
= —= - I
277 NG Up0Ob t X1 Wi Vs J

providing a link between the externally applied voltadé =

1 — ps and intrinsic line—junction quantities, such as the tun-
neling current and the boundary valgg of the slow—mode
density. This is one of the central results of our work pre-
sented here. In deriving EJ_{36), we have fully taken into
account charging of the line junction arising from its coogl

b ml to leads. Solving it together with the intrinsic dynamicstod

, (36)

><V w

1
slow mode (induced by its Hamiltonia’lﬁb( 7 )) completely de-
termines the current.

w

m IV. RESULTS FOR TRANSPORT THROUGH LINE
i 2 JUNCTIONS

-L/ 0 L/ We have seen, in Sddl Il, that the tunneling current through
FIG. 1: Line junction attached to chiral edge—channel leatlse the line junction is determined by the dynamics of the slow

chemical potentials of incoming lead branches (1 and 3) aezifi Mode only. Relating its Hamiltonian to that of free quasipar
experimentally by external reservoirs. These, togethén thie tun-  ticles, which are Dirac fermions far = 1/2 and Majorana
neling current in the junction region (defined to flow from the ~ fermions for = 1/4, we are able to calculate its dynamics
branch to then, branch and indicated by vertical dashed lines), de-exactly. With the help of EqLT36), quantities determinihipt
termine the boundary condition for the slow normal-modesitgat ~ dynamics are related to the externally applied voltagdirRul
the junction boundaries = +L/2. Panels a and b show the two poth understandings together, we find the line—junctiors con
possible chiralities of the junction that can be distinge, e.9., by  ductance. As it is quite different for the two cases mentibne
the chirality of them, branchix, = +1 (1) for a (b). above, we discuss them in separate subsections.

><V N
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A. Case?d = 1/2: Conductance oscillations as a function of HereL; = whup/tm,m, iS @ length scale set by the effective
junction length tunneling strength. From Eq.{[36), we find the expression for
the current through the line junction as a function of theext
Within the refermionization procedure applied in 9eclil A, nally applied voltage
we find the current through the junction as the tunneling
current between the two flavors of a fictitious chiral Dirac [ _ X T(L)
pseudo—-spin 1/2 fermion: 3T 2k 14 Leatvms T(L)

2Vmq Vmg

(w1 —p3) (41)

With Eq. [£1), we have the full solution of the transport prob
(37) lemfor line junctions with effective filling factor = 1/2. A

The chemical-potential difference between theand | linear |-V characteristic is obtained, with a conductanse o

branches is related to that of the slow mode via cillating as a function of junction length and magnetic field
: (through dependence on the paramgjeits maximum value,
pr =y = V2 (38)  reached foff' (L) — 1 and given by

~ L

. tm m 2 —iXpT

IJ(Q) = —IXbX1 ;i 2 /L dz {\IJJ{\Ifle xow /€2 —H.c.} .
-2

Equation[[3l), together with EQ{112), implies a constamt-de

sity difference between the two fermion flavors along thejun Gmax _

tion. This provides the driving force for the current. J
The chiral-tunneling problem can be solved exactly us-

ing standard method®:2%4” Here we employ the scattering is smaller than that of an adiabatic point contact betweén ch

approach to transpot:4° Using an obvious spinor notation ral fractional edge channels considered in Rel. [50], asiisho

for the pseudospin—1/2 fermion wave functions, the folloyvi be expected.

Angitzefor eigenstates of the Hamiltonia‘ﬂég) [displayed in

Eqg. (10)] in the three regiongyz < —L/2, xpz > L/2, and

|z| < L/2 can be written down:

2

€ .
ﬁ nn {an Vm2} ) (42)

B. Caser = 1/4: Conductance oscillations as a function of

. xpE
( iT > _ < 1 ) R ’ (39a) transport voltage
l L 0
Xbr<— %
. XpE Y] Refermionization yields an expression for the tunneling
\IJT tT 1T F O 1T 5o . . . .
U, LT lo)e ™t A (39b)  current in terms of the fictitious Dirac fermiaf,
XbZ> 5
\IJT ) (d+ ) PR 4 ( _di ) i L
=a e +0b X e c v [
(‘I’l MR @ )< 1V =xig [ do {ulovl—worn} . (49)
2
with the abbreviations
N or the Majorana fermions that diagonalize the slow—mode
dy = £\ V1+ £ T2 (39d)  Hamiltonian whemA = 0:
E+tmm,/1+C2 L
K+ = Xb o . (398) ) vt 3 ' )
b Iy" = 5/ L dr {4+ (=ix102)é- + E-(—ix102)€+ } -
The parametef = hvpA/(2tm,m, %) measures the deviation 2 (44)

from perfect energy and momentum conservation for tunnely, ¢jose analogy with the chiral~tunneling problem encoun-

ipg pseudofermior)s. Requiring cont_inuity of thg wave func-arad fory — 1/2 and discussed in SEEIY A above, we solve
tion atz = £L/2 yields a system of linear equations that We yhe transport problem through the line junction by consider
can use to find expressions for the transmission coefﬁmen%g the scattering of Dirac fermions, in terms of the Majo-

t; andt,. Note that, due to chirality, continuity of the wave (504 normal modes. As in the Landauer—Bittiker formalism
function is sufficient to ensure current conservationtAand ¢, transport84%incoming scattering states are postulated for

| turn out to be independent of energy the tunneling cur- " 7 /9 given in terms of a Majorana spinor notation as
rentis proportional to the density difference of the pseiio

components. Its explicit expression is

. xpE
I.](Q) = - |tl|2 \/ivbé_)b Sgn(le - sz) l (403) ( §+ ) = ( Z;b ) em(%vb_’f%) . (45)
_ e L
with the transmission probability found from the above nalc ST
lati . . .
ationas Outgoing scattering states exist fggz > L/2 and are super-
sin? [Z_L T+ ¢ <2] positions of a Dirac—fermion statg, and a Dirac ‘hole’ state
t[*=T(L) = ' (40b) w34

1+¢?



(5)

In the line—junction region, a superposition of the two eigtates with energy eigenvaliégis realized:

(5"' ) =a ( ) ck+ ) eik+x + b ( YXbSk_ ) eik,x . (47)
5— |I|<% LXbSky Ck_

Their respective wave vectors are solutionstépf, + = E. Requiring continuity of the Majorana—spinor wave funosaat
the line—junction interfaces = +L/2, which simultaneously ensures current conservation fercthiral—fermion problem
considered here, yields expressions for the transmissigilitadest .. In contrast to the case = 1/2, the latter are energy
dependent. The transport current through the line jundésigiven by

—i (! eiz(%7%)+t L em(%ﬂ%) . (46)
xow>& ixb T\ —ixe

27hvp0b
(4) _ X1Xb 2
B0 =0 [ s )P (48)

hence we only need the general expressiortfol?, which is found to be

(1 [1+72 — |7’k+|) (1 [1+7r2 + |7’k7|)
t4]? =2 u

1+|Tk+||rk7|+\/1+7’,%+\/1+7’,%7

sin? [—(m — k_)L] . (49)

Note that the energy dependenceaf|? is implicit through  tions having effective filling factob = 1/4. While such a
the dependence éf. on E. solution is accessible, even if only numerically, in the gen

Solving Eq. [@B) in conjunction with EQ.TB6) yield 1) as eral case, itis instructive to look at the special situatidrere

: : l A = 0 and tunneling is weak. In this limit, we find for the
afunction of the externally applied voltage= (ju — 113)/e differential tunneling conductance the expression

and, hence, solves the transport problem through line junc-
art e 1 wl
o AT {1 — cos (ﬁv+v eV ,  (50)

which is valid as long as the expression in curly brackets is
smaller than unity. It exhibits an oscillatory dependenne o
both junction length and applied voltage, which we illustra
in Fig.[2 for a realistic set of parameters. The conductance
oscillations as a function of are a direct consequence of
the velocity splitting of the Majorana pseudofermions that
150 are the quasiparticle excitations in the line junction. sThi
120 signature behavior fo? = 1/4 will survive in the gen-
90 eral case as long as the junction is narrow enough such that
60 Leff A < vwl?eV]/(hvd). Its observation in real samples would
provide strong evidence for the reality of the Majorana gtuas
particles in QH line junctions, showing yet another exam-
0.8 0 ple of how strongly—correlated condensed—matter systems e
1 hibit features of relativistic quantum—field theories tygily
encountered in the realm of elementary—particle physics.

FIG. 2: lllustration of conductance oscillations. The dimsi®nless

differential tunneling conductange= 23 4L is plotted as a func- V. SUMMARY AND CONCLUSIONS
tion of Verr = < V andLer = £, according to Eq[T30). Our choice
of units is motivated by the fact that magnetic lengtnd Coulomb In this article, we provide a detailed theory of trans-

energye?/(e() are characteristic scales in the fractional-quantum—port through line junctions formed between tunnel—coupled
Hall regime. We assumad'u/(ehw4v-) = 0.1 here butresults for - counter—propagating fractional—quantum—Hall edge calsnn
different values can be obtained by linear scalind/gfor Le. having different filling factors of the Laughlin type. Stn
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correlations within the tunneling region result in a norii  ductance in Eq[{30), which shows oscillations as a funaifon
spectrum of elementary excitations when the effectivenfjlli transport voltage. This behavior is the signature of a montr
factor? of the junction is equal td/2 or 1 /4. An example for ial velocity splitting similar to spin—charge separatiaririter-
the former (latter) case is a line junction between edge characting quasi—1D systems. Its observation would provide evi
nels having filling factor 1 andl/3 (1/5). Using bosonization dence of yet another mechanism for electron fractionatinat
and refermionization techniques, we map the original line-in strongly correlated electron systems. Experimentsin-sa
junction problem to a model of tunneling between noninter-ples of 90-degree beA* or laterally separatéd 2D elec-
acting chiral spin—1/2 Dirac pseudofermions (for= 1/2)  tron systems, suitably modified to reach the fractional quan
or a chiral spinless p—wave superconductor with Majoranatum Hall regime, could be used to test our predictions.
pseudofermion quasiparticles (for= 1/4). In both situa-
tions, we find the excitation spectrum and eigenstates of the
line junction exactly. Together with an exact general refat
given by Eq.[[(3b), between the externally applied chemical-
potential difference; — 3 and intrinsic line—junction quanti-
ties, such as the total curreht we can solve for the transport
I-V characteristics. The full solution for the cage= 1/2 Our work was supported in part by German Science Foun-
is given by Eq.[[41), together with EQ.{40b). It exhibits os-dation (DFG) Grant No. ZU 116/1 and a German-Israeli
cillations as a function of junction length that are similar  Project Cooperation (DIP) of the German Ministry of Edu-
those found in tunnel-coupled quantum wieé%4'To cal-  cation and Research (BMBF). We enjoyed useful discussions
culate transport through junctions havidg= 1/4 in the  with N. Andrei, C. de C. Chamon, P. Coleman, M. Grayson, V.
most general case requires simultaneous numerical solftio Oganesyan, F. v. Oppen, Y. Oreg, S. L. Sondhi and A. Stern.
Eqgs. [48) and{36) for specific parameters realized in experiE. S. wishes to thank the Department of Physics and Astron-
ment. For the special situation of a narrow junction, anedyt omy at Rutgers University for the hospitality during part of
results are available. We give the differential tunneliogc the time this work was carried out.
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