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We present a detailed theory of transport through line junctions formed by counterpropagating single–branch
fractional–quantum–Hall edge channels having different filling factors. Intriguing transport properties are ex-
hibited when strong Coulomb interactions between electrons from the two edges are present. Such strongly
correlated line junctions can be classified according to thevalue of an effective line–junction filling factor̃ν
that is the inverse of an even integer. Interactions turn outto affect transport most importantly for̃ν = 1/2 and
ν̃ = 1/4. A particularly interesting case is̃ν = 1/4 corresponding to, e.g., a junction of edge channels having
filling factor 1 and1/5, respectively. We predict its differential tunneling conductance to oscillate as a function
of voltage. This behavior directly reflects the existence ofnovel Majorana–fermion quasiparticle excitations
in this type of line junction. Experimental accessibility of such systems in current cleaved–edge overgrown
samples enables direct testing of our theoretical predictions.

I. INTRODUCTION

One–dimensional (1D) electron systems1 have long been
the focus of theoretical and experimental research. Initially,
theorists studied them as rare examples of exactly soluble
interacting many–body systems.2,3,4 They served as a basis
for the development of powerful new theoretical tools such
as bosonization5,6,7 and refermionization8 techniques. Due
to their intriguing non–Fermi–liquid properties, interacting
1D electron systems are classified within the distinct phe-
nomenology ofLuttinger–liquidbehavior.9 Eventually, real-
izations of quasi–1D electron systems were found in metallic
materials with strongly anisotropic resistivity.10 Recent fabri-
cation of clean long semiconductor quantum wires11 as well
as carbon nanotubes12 created new possibilities to observe
Luttinger–liquid behavior in experiment.

An especially versatile type of 1D electron system is real-
ized at the boundary of two–dimensional (2D) electron sys-
tems in a strong perpendicular magnetic field. At particu-
lar values of the filling factorν = 2πℓ2n2D, where ℓ =
√

h̄c/|eB| is the magnetic length andn2D the electron sheet
density, the 2D system becomes incompressible in the bulk,13

giving rise to quantized values of the Hall resistance. In this
regime where the quantum Hall (QH) effect14,15 is observed,
low–lying excitations exist at the sample boundary16 whose
electronic properties are analogous to chiral versions of Lut-
tinger liquids when the filling factor at the incompressibility is
fractional.17 Unlike the more conventional types of quasi–1D
metals, the properties of edge excitations in a QH sample can
be easily tailored. Simple adjustment of the magnetic field
can create different QH states in the bulk of the 2D system
with concomitant change in the edge’s chiral–Luttinger–liquid
properties. Advanced nanostructuring techniques enable the
creation of novel tunneling geometries18,19,20,21involving QH
edges as well as line junctions between them.22,23,24While line
junctions between counterpropagating chiral edge channels
having the same integer filling factor closely mirror proper-
ties of conventional quasi–1D systems,25,26,27an entirely new

arena for novel correlation effects is opened up when the edge
channels forming the junction belong to fractional–QH sam-
ples. For the case of a disordered junction, these have been in-
vestigated in Refs. [28,29]. A related study for a clean system
of tunnel–coupledcopropagatingfractional–QH edge chan-
nels in bilayers was performed recently.30,31

Here we consider the situation where the single–branch
edge channels forming the line junction have opposite chi-
rality and belong to QH systems with fractional filling factors
1/(m1 +1) and1/(m2+1) with even integersm1 6= m2. We
assume the junction region to be clean and of finite length
L, having edge–channel leads attached that contact to four
reservoirs where transport measurements can be performed.
This sample geometry is experimentally realizable in recently
grown corner junctions between mutually orthogonal 2D elec-
tron systems.21,24To enable tunneling transport between them,
the two edge channels have to be close enough in space,
which typically facilitates strong interchannel Coulomb inter-
actions within the junction region. This turns out to signifi-
cantly affect the junction conductance when the effective fill-
ing factor ν̃ = 1/|m1 − m2| is equal to1/2 or 1/4. Using
bosonization and refermionization techniques, we succeedfor
both cases in mapping the originally strongly interacting line–
junction system onto a system of noninteracting fermions. For
ν̃ = 1/2, these new quasiparticles are fictitious chiral spin–
1/2 fermions which have no direct physical meaning. Only
observables related to their pseudo–spin degree of freedom
correspond to measurable quantities. In the other case of
ν̃ = 1/4, two Majorana fermions having different velocities
v+ andv− turn out to be the fundamental particle excitations
in the line junction. The existence of a velocity splitting di-
rectly results in oscillations of the differential junction con-
ductance as a function of the transport voltage, which can be
detected experimentally. Its observation would confirm the
existence of yet another type of exotic quasiparticle in low–
dimensional systems.

This article is organized as follows. We start, in Sec. II,
by specifying the model for an isolated QH line junction and
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apply the techniques of bosonization and refermionizationto
obtain its solution. The emergence of new quasiparticles will
be elucidated. In the following Sec. III, the coupling of such a
line junction to external edge–channel leads is considered. We
derive relations between the chemical potentials in the leads
to quantities describing the line junction that take full account
of charging effects. These results are then applied in Sec. IV
to calculate transport properties of line junctions, with partic-
ular focus on the cases̃ν = 1/2 and ν̃ = 1/4. A summary
and conclusions are presented in Sec. V. This article provides
full details of and extends results reported in a previous short
publication.32

II. EFFECTIVE LOW–ENERGY MODEL FOR A
QUANTUM–HALL LINE JUNCTION

A single branch of low–lying edge excitations exists in
QH samples at the Laughlin series of filling factorsνm =
1/(m + 1). These form chiral 1D electron systems that can
be described,17 using the bosonization33 approach, by a single
chiral boson fieldφm(x). The (suitably normal–ordered)elec-
tronic charge density at a locationx along the edge is given by
̺m(x) = :ψ†

m(x)ψm(x): =
√
νm ∂xφm(x)/(2π). Its dynam-

ics is determined by the Hamiltonian

Hm =
h̄vm

4π

∫

dx (∂xφm)2 . (1)

The edge velocityvm is the sum of a one–electron contri-
bution vF, which is proportional to the slope of the exter-
nal potential confining electrons in the QH sample, and an
interaction contributionνmU/(2πh̄) that typically dominates
in the long–wave–length limit.34 The chirality of a QH edge
is manifested by the fact that disturbances in the electronic
charge density propagate only in one particular direction
along the sample perimeter. Mathematically, this is expressed
by the canonical commutation relations

[

φm(x) , φm(x′)
]

=
iχ π sgn(x− x′) for the boson fieldφm. The chirality param-
eterχ assumes the value+1 (−1) for right(left)–movers. An
especially useful property of chiral 1D systems is the com-
plete equivalence of their descriptions in terms of bosonic
and fermionic degrees of freedom.8,35 For single–branch QH
edges, this is expressed by the bosonization identity17 of the
electron annihilation operator,

ψm(x) =
√
zm Fm exp

{

ix
Y

ℓ2
+ iχ

φm(x)√
νm

}

. (2)

Here zm is a normalization constant, andY denotes the
guiding–center location of electrons at the Fermi energy. The
Klein factorFm acts as a ladder operator for the electron num-
ber and ensures fermionic statistics of bosonized electronop-
erators from different QH edges or edge branches.8

We are interested in studying a QH line junction that is
formed when two parallel fractional–QH edge channels with
opposite chirality are coupled by uniform tunneling along a
finite lengthL. Such a junction can be realized, e.g., by
fabricating two 2D electron systems that are laterally sepa-
rated22 or form a corner junction.21,24 In the junction region,

the charge densities and, hence, respective bosonic fieldsφm1

andφm2
describing the two edges are coupled via interactions

and tunneling. The total Hamiltonian of the line junction is
thus given byHJ = HLL +Htun, where

HLL = Hm1
+Hm2

+Hint , (3a)

Hint =

√
νm1

νm2

4π2
U

∫ L
2

−L
2

dx ∂xφm1
∂xφm2

, (3b)

Htun =

∫ L
2

−L
2

dx
{

t ψ†
m1
ψm2

+ H.c.
}

. (3c)

Here we have assumed equal strengths for intra– and inter–
channel interactions which is the case for typical line junc-
tions.

The partHLL of the line–junction Hamiltonian can be diag-
onalized in a straightforward manner. For the casem1 = m2,
the familiar phase–field description9 of a nonchiral Luttinger
liquid is recovered in the typical situation where the Coulomb
matrix element dominates the bare velocitiesvFj (j = 1, 2).
Addition of the tunneling termHtun in its bosonized form
yields an orthodox sine–Gordon model whose properties have
been studied extensively.36 We do not discuss this nonchiral
case here any further. Instead, we focus on situations where
m1 6= m2. Then the line junction is intrinsically chiral, also
in the limit of strong Coulomb interactions.51 Instead, we can
write HLL as a sum of independent contributions from two
chiral normal modes,

HLL =
h̄

4π

∫ L
2

−L
2

dx
{

va (∂xφa)
2 + vb (∂xφb)

2
}

. (4)

The normal–mode boson fieldsφa andφb obey the commuta-
tion relations

[

φa,b(x) , φa,b(x
′)

]

= iχa,bπ sgn(x − x′) with
χa = −χb. Assuming the realistic limit where the bare edge
velocities are much smaller than the Coulomb matrix element,
we find the expressions

va =
|νm1 − νm2|U

2πh̄
+
νm1

vF1 + νm2
vF2

|νm1 − νm2|
, (5a)

vb =
νm2

vF1 + νm1
vF2

|νm1 − νm2|
, (5b)

χb = −χ1 sgn(νm1
− νm2

) , (5c)

φa =
(
√
νm1

− ε
√
νm2

)φm1
+ (

√
νm2

− ε
√
νm1

)φm2
√

|νm1
− νm2

|
,(5d)

φb =
(
√
νm2

+ ε
√
νm1

)φm1
+ (

√
νm1

+ ε
√
νm2

)φm2
√

|νm1
− νm2

|
.(5e)

Here we have defined a small parameter (of orderh̄vFj/U )

ε =

√
νm1

νm2

|νm1
− νm2

|
vF1 + vF2

va
(6)

and neglected terms of quadratic order inε.52

After bosonization, the tunneling Hamiltonian reads

Htun = 2|t|√zm1
zm2

∫ L
2

−L
2

dx cos

(

φn√
ν̃

+ x
∆

ℓ2

)

, (7)
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where we have absorbed the phase of the tunneling matrix
element into the neutral–mode bosonic field

φn =

√
νm2

φm1
+
√
νm1

φm2
√

|νm1
− νm2

|
− χ1

√
ν̃ arg(t) . (8)

The abbreviatioñν = νm1
νm2

/|νm1
− νm2

| ≡ 1/|m1 −m2|
has the meaning of an effective junction filling factor, and
∆ = Y1 − Y2 is a measure for the width of the line junc-
tion. To first order in small quantities defined above, the neu-
tral mode is given in terms of the normal modes ofHLL as
φn = φb − εφa. (Here we have used the freedom to redefine
the normal–mode fields by a constant shift to absorb the phase
of the tunneling matrix element inφb.) If we furthermore as-
sume weak enough tunneling such thattℓ ≪ U , then terms
in Htun that couple the normal modes ofHLL are of second

order in small quantities. As we will see below, this is gen-
erally the relevant physical situation and even required inthe
caseν̃ = 1/4. In what follows we restrict ourselves to the
approximationε → 0 (corresponding toU → ∞). We note,
however, that corrections to leading order inε can be included
perturbatively, yielding small corrections to our final results
which do not affect them significantly. The Hamiltonian of
the line junction is then diagonalized, to a good approxima-
tion, by the normal modesφa andφb of HLL , and we find

HJ = Ha +H
( 1

ν̃ )
b , where

Ha =
h̄va

4π

∫ L
2

−L
2

dx (∂xφa)
2

, (9a)

H
( 1

ν̃ )
b =

∫ L
2

−L
2

dx

{

h̄vb

4π
(∂xφb)

2
+ 2|t|√zm1

zm2
cos

(

φb√
ν̃

+ x
∆

ℓ2

)}

. (9b)

The fast normal mode, labeled a, turns out to be free and un-
affected by tunneling. This is quite clear physically, as this
mode is closely related to the total charge density in the line
junction (ρa ≡ ∂xφa

2π ), which is left invariant in any tunneling
process. As we are only interested in studying tunneling trans-
port, we do not consider the fast mode any further. The slow
mode, being approximately equal to the neutral mode which
measures thedifferencein electron densities for the two edge
branches forming the junction, has a dynamics that is strongly

influenced by the tunneling term. Its HamiltonianH
( 1

ν̃ )
b is

that of a chiral sine–Gordon model which has been studied in
different contexts before.30,37 Such theories can be classified
according to the different values of the effective junctionfill-
ing factorν̃ that is given here by the inverse of even integers.
For1/ν̃ > 4, the cosine term has been shown30 to be irrelevant
in a renormalization–group sense. This means that it does not
alter the excitation spectrum of the free chiral boson theory in
any important way and can therefore be treated as a perturba-
tion. The situations when1/ν̃ = 4 and2, however, turn out
to be different. While no perturbative approach is permissible
for these cases, the effect of the cosine term can nevertheless
be calculated, even exactly, using bosonization identities of

the kind expressed in Eq. (2). Namely, it is possible30,37 to
map the rather complicated chiral bosonic field theory for the
slow mode onto that of noninteracting fictitious fermions. We
proceed to show this in the following two subsections, as the
refermionized description of the slow–mode dynamics forms
the basis for our subsequent transport calculations.

A. Caseν̃ = 1/2: Fictitious chiral fermion tunneling

To solve the chiral sine–Gordon Hamiltonian withν̃ = 1/2,
we introduce — for purely mathematical reasons — a ghost
field η(x) that has the same chirality and dynamics as the slow
modeφb. It is then possible to define a pair of fictitious chiral
fermions, distinguished by a pseudospin degree of freedom
σ =↑, ↓ using the bosonization identity

Ψσ(x) =
√
zbFσ exp

{

iχb
η(x) + σφb(x)√

2

}

. (10)

In this new notation, the HamiltonianH(2)
b of the slow mode

represents tunneling between the two flavors of fictitious
fermions:

H
(2)
b =

∫ L
2

−L
2

dx

{

h̄vb

∑

σ

Ψ†
σ(−iχb∂x)Ψσ + t̃m1m2

[

Ψ†
↑Ψ↓e

−iχbx∆/ℓ2 + H.c.
]

}

. (11)

The tunneling strength̃tm1m2
= |t|√zm1

zm2
/zb is generally

different, because of chiral–Luttinger–liquid properties, from
the matrix element for tunneling between the original line–
junction edge channels.53 Physical observables are expressed
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in terms of pseudospin–related quantities, while the charge
degree of freedom for fictitious fermions remains hidden from
measurement. For example, the spin density and the density
associated with the slow mode are equivalent:

Ψ†
↑Ψ↑ − Ψ†

↓Ψ↓ =
√

2̺b ≡ ∂xφb√
2π

. (12)

The representation ofH(2)
b in terms of the fictitious chiral

pseudo–spin–1/2 fermion, being quadratic in this field, makes
it possible to treat transport straightforwardly. This will be
discussed below in Section IV A.

B. Caseν̃ = 1/4: Velocity–split Majorana fermions

A bosonization identity of the type given in Eq. (2) can be
used to define a Dirac fermion in terms of the chiral boson

field φb:

ψb(x) =
√
zbFb exp

{

iχb

[

x
∆

2ℓ2
+ φb(x)

]}

. (13)

The density̺b of the slow mode is related to the normal–
ordered density: ψ†

bψb : of the new fictitious fermion via

̺b ≡ ∂xφb

2π
= : ψ†

bψb : − ∆

2ℓ2
. (14)

With the help of the relation30

ψb i∂x ψb = −2πχb z
2
b F2

b exp

{

iχb

[

2φb + x
∆

ℓ2

]}

, (15)

the Hamiltonian of the slow mode can be rewritten as

H
(4)
b =

∫ L
2

−L
2

dx

{

h̄vbψ
†
b(−iχb∂x)ψb − h̄vb

∆

2ℓ2
ψ†

bψb +
h̄vt

2

[

ψb(−iχb∂x)ψb + ψ†
b(−iχb∂x)ψ†

b

]

}

, (16)

where the tunneling matrix element has been absorbed into
the velocity parametervt = |t|√zm1

zm2
/πh̄z2

b . In the

representation of the fictitious fermionψb, H(4)
b looks like

the Bogoliubov–de Gennes Hamiltonian38 of a spinless p–
wave superconductor. It differs from similar systems consid-
ered previously39,40 by its chiral 1D nature. We do not ex-
plicitly pursue the superconducting analogy here any further
(although the formalism employed below could be phrased
within such a framework). Instead, we use the fact that the real
and imaginary parts of a Dirac fermion are Majorana fermions
and define fieldsξ± ≡ ξ†± via

ξ+ =
ψb + ψ†

b√
2

, (17a)

ξ− =
ψb − ψ†

b√
2 i

. (17b)

Note that: ψ†
bψb := iξ+ξ−. The expression for the Hamilto-

nian of the slow mode reads

H
(4)
b =

∫ L
2

−L
2

dx

{

h̄

2

∑

r=±

vr ξr(−iχb∂x)ξr − i
h̄vb∆

ℓ2
ξ+ ξ−

}

,

(18)
with different velocitiesvr = vb + rvt for the two Majo-
rana fields. Hence, while the slow mode is characterized by a
single velocityvb, tunneling leads to the generation of two
different velocities for the resulting quasiparticles that turn
out to be Majorana fermions. A dynamically generated ve-
locity splitting of this type has been found before in tunnel–
coupled interacting quantum wires41,42,43 and quantum–Hall

bilayers.30 It is reminiscent of the spin–charge separation ex-
pected to occur in interacting 1D electron systems.1 The rep-
resentation ofH(4)

b in terms of the fictitious noninteracting
Majorana fermions enables treatment of transport through the
line junction, which will be shown below in Sec. IV B. Diag-
onalization ofH(4)

b is straightforward. Its spectrum has two
branches,

Ek,± = h̄χbk

(

vb ± vt

√

1 + r2k

)

, (19)

with rk = vb∆/(vtkℓ
2). The corresponding eigenstates

are given, using a spinor notation in the basis of Majorana
fermionsξ±, as

(

ξ+
ξ−

)

+

=

(

ck
iχbsk

)

eikx , (20a)

(

ξ+
ξ−

)

−

=

(

iχbsk

ck

)

eikx . (20b)

Here we used the abbreviations

ck
sk

}

=

√

√

1 + r2k ± 1
√

2
√

1 + r2k

. (21)

III. TUNNELING CURRENT, CHEMICAL POTENTIAL,
AND COUPLING TO VOLTAGES

To be able to calculate conductances, it is necessary to treat
the nonequilibrium situation where a finite voltage is applied
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to the line junction. This requires proper definition of oper-
ators for currents and chemical potentials within the junction
region, which we set out to do in the first part of this section.
Our results are then applied to relate these quantities to exter-
nally adjustable lead voltages.

A standard calculation yields the expression for the tunnel-
ing current flowing from edge channel 1 to edge channel 2
within the line junction as

IJ =
i

h̄

∫ L
2

−L
2

dx
{

t ψ†
m1
ψm2

− H.c.
}

. (22)

After bosonization, and within the same approximations used

above, i.e., for smallε [see Eq. (6)], we find the following
expression for the transport current through the line junction:

I
( 1

ν̃ )
J = χ1

2|t|
h̄

√
zm1

zm2

∫ L
2

−L
2

dx sin

(

φb√
ν̃

+ x
∆

ℓ2

)

. (23)

It comes as no surprise that the current, as the tunneling
Hamiltonian, depends only on the slow normal mode. Hence,
only the latter features in our transport calculation. Defining
the spatially varying partial current

I
( 1

ν̃ )
b (x) = χ1

|t|
h̄
√
ν̃

√
zm1

zm2

∫ L
2

−L
2

dx′ sin

(

φb(x
′)√
ν̃

+ x′
∆

ℓ2

)

sgn(x− x′) (24)

turns out to be useful for later. Obviously,I
( 1

ν̃ )
b (L/2) =

−I(
1
ν̃ )

b (−L/2) ≡ I
( 1

ν̃ )
J /(2

√
ν̃).

The local chemical potential of the slow normal mode can
be defined in the usual way44 as the functional derivative of the
Hamiltonian with respect to density:µ(J)

b (x) = δHJ/δ̺b(x).
Using the commutation relations for chiral boson fields, it is
straightforward to prove thatχbφb is canonically conjugate to
̺b, and therefore

δO
δρb(x)

= iχb
[

φb(x) , O
]

(25)

for an arbitrary functionalO. Application of this identity
yields an expression for the local chemical potential,

µ(J)
b (x) = 2πh̄

{

vb̺b(x) − χ1 I
( 1

ν̃ )
b (x)

}

. (26)

As a special case of this equation, we find the chemical poten-
tials at the endpoints of the junction to be

µ(J)
b

(

±L
2

)

= 2πh̄







vb̺b

(

±L
2

)

∓ χ1 I
( 1

ν̃ )
J

2
√
ν̃







. (27)

The continuity equation for the slow–mode density can be
derived in a similar way,

d

dτ
̺b = ∂τ̺b +

i

h̄

[

HJ , ̺b
]

, (28a)

= ∂τ̺b + χb∂x

{

vb̺b − χ1 I
( 1

ν̃ )
b

}

. (28b)

In the stationary limit where∂τ̺b = 0, Eqs. (26) and (28b)
imply the exact relation

∂xµ
(J)
b = 2πh̄χb

d

dτ
̺b . (29)

Integrating it, and observing the relation
√
ν̃ d

dτ

∫

x ̺b =

I
( 1

ν̃ )
J sgn(νm1

− νm2
), we find

µ(J)
b

(

L

2

)

− µ(J)
b

(

−L
2

)

= −2πh̄χ1
I
( 1

ν̃ )
J√
ν̃

, (30)

and comparison with Eqs. (27) yields

̺b

(

L

2

)

= ̺b

(

−L
2

)

≡ ¯̺b . (31)

The periodic boundary condition expressed in Eq. (31) is a
nontrivial property of the stationary state that enables usto
treat the line junction as separate from any edge–channel leads
that couple it to external reservoirs. The effect of external
voltages will be to set the appropriate value of¯̺b consistent
with the valueIJ for the line–junction current. A derivation of
these relations will be presented in the following paragraphs.

Edge channels forming the line junction typically exist be-
yond the junction region but are not coupled anymore via tun-
neling or interactions. These incoming and outgoing edge
branches serve as noninteracting leads that couple the junc-
tion to external reservoirs with experimentally controllable
chemical potentials. (See the figure in Ref. [32] and Fig. 1
below for illustration.) The Hamiltonian for the lead regions
|x| > L/2 is therefore given by that of two uncoupled edges;
HE = Hm1

+Hm2
. As the separate chiral edge densities for

each edge branch are just linear combinations of the densities
̺a and̺b that are the normal modes in the junction, we can
write down an expression forHE in terms of the latter. In the
limit of strong intra–edge Coulomb interactions, which is the
physically relevant situation that we have been considering all
along, it reads
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HE =
U

2|νm1
− νm2

|

∫

|x|> L
2

dx
{

(ν2
m1

+ ν2
m2

)̺2
a + 2νm1

νm2
̺2

b − 2
√
νm1

νm2
(νm1

+ νm2
)̺a̺b

}

. (32)

While the a and b modes are certainly not normal modes in the
lead region, it is nevertheless possible to define their chemical
potentials viaµ(E)

a,b(x) = δHE/δ̺a,b(x). AsHE is a nondiago-
nal quadratic form when expressed in terms of̺a and̺b, each
of the chemical potentialsµ(E)

a andµ(E)
b depends on both den-

sities. In other words, there exists a finite cross–capacitance
between the a and b modes in the lead region. Re–expressing
µa,b in terms of the original chiral edge densities, we find

µ(E)
a

U
=

νm1
̺m1

− νm2
̺m2

√

|νm1
− νm2

|
sgn(νm1

− νm2
) , (33a)

µ(E)
b

U
= −

√
ν̃ (̺m1

− ̺m2
) sgn(νm1

− νm2
) , (33b)

where again terms of orderε have been neglected. The expres-
sions given in Eq. (33) are useful because the local chemical
potential in each of the chiral edge branches within the lead
region is directly related to the local chiral edge density in
that branch viaµj = U ̺j , within the limit of strong intra–
edge Coulomb interactions considered here. Experimentally,
two of the four lead branches’ chemical potentials are con-

m1

m1

m2

m2

0 x−L/2 L/2

1

4

2

3

1 2

0 x−L/2 L/2

34

a

b

FIG. 1: Line junction attached to chiral edge–channel leads. The
chemical potentials of incoming lead branches (1 and 3) are fixed
experimentally by external reservoirs. These, together with the tun-
neling current in the junction region (defined to flow from them1

branch to them2 branch and indicated by vertical dashed lines), de-
termine the boundary condition for the slow normal–mode density at
the junction boundariesx = ±L/2. Panels a and b show the two
possible chiralities of the junction that can be distinguished, e.g., by
the chirality of them1 branch:χ1 = +1 (−1) for a (b).

trolled by attachment to external reservoirs, namely thosehav-
ing chiral edge–density waves propagatingawayfrom a reser-
voir. We adopt the convention that the incoming (outgoing)
edge lead forx < −L/2 is labeled 1 (4), whereas the incom-
ing (outgoing) edge lead forx > L/2 is labeled 3 (2). (See
Fig. 1.) We find then from Eqs. (33)

µ(E)
b

∣

∣

∣

x
<
>∓L

2

= χb

√
ν̃

(

µ1/2 − µ4/3

)

. (34)

Requiring continuity of the chemical potentialsµa,b at the
lead–junction interfaces, and using Eqs. (27), (31) and (5c)
as well as the constancy ofµa throughout the line junction,
we find the relations

4πh̄χb vb ¯̺b =
√
ν̃(µ1 − µ3 + µ2 − µ4) , (35a)

2πh̄ I
( 1

ν̃ )
J

sgn(νm1
− νm2

)
= −ν̃(µ1 + µ3 − µ2 − µ4) , (35b)

νm1
(µ1(4) − µ2(3)) = νm2

(µ4(1) − µ3(2)) . (35c)

Here we used a compact notation in Eq. (35c) to show the
cases corresponding to both line–junction chiralitiesχ1 =
+(−)1 in one line. Straightforward elimination yields an
equation for the voltage drop across the junction,

µ1 − µ3

2πh̄
=

χb√
ν̃
vb ¯̺b + χ1

νm1
+ νm2

2νm1
νm2

I
( 1

ν̃ )
J , (36)

providing a link between the externally applied voltageeV =
µ1−µ3 and intrinsic line–junction quantities, such as the tun-
neling current and the boundary value¯̺b of the slow–mode
density. This is one of the central results of our work pre-
sented here. In deriving Eq. (36), we have fully taken into
account charging of the line junction arising from its coupling
to leads. Solving it together with the intrinsic dynamics ofthe

slow mode (induced by its HamiltonianH
( 1

ν̃ )
b ) completely de-

termines the current.

IV. RESULTS FOR TRANSPORT THROUGH LINE
JUNCTIONS

We have seen, in Sec. II, that the tunneling current through
the line junction is determined by the dynamics of the slow
mode only. Relating its Hamiltonian to that of free quasipar-
ticles, which are Dirac fermions for̃ν = 1/2 and Majorana
fermions forν̃ = 1/4, we are able to calculate its dynamics
exactly. With the help of Eq. (36), quantities determining this
dynamics are related to the externally applied voltage. Pulling
both understandings together, we find the line–junction con-
ductance. As it is quite different for the two cases mentioned
above, we discuss them in separate subsections.
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A. Caseν̃ = 1/2: Conductance oscillations as a function of
junction length

Within the refermionization procedure applied in Sec. II A,
we find the current through the junction as the tunneling
current between the two flavors of a fictitious chiral Dirac
pseudo–spin 1/2 fermion:

I
(2)
J = −iχbχ1

t̃m1m2

h̄

∫ L
2

−L
2

dx
{

Ψ†
↑Ψ↓e

−iχbx∆/ℓ2 − H.c.
}

.

(37)
The chemical–potential difference between the↑ and ↓
branches is related to that of the slow mode via

µ↑ − µ↓ =
√

2µ(J)
b . (38)

Equation (31), together with Eq. (12), implies a constant den-
sity difference between the two fermion flavors along the junc-
tion. This provides the driving force for the current.

The chiral–tunneling problem can be solved exactly us-
ing standard methods.45,46,47 Here we employ the scattering
approach to transport.48,49 Using an obvious spinor notation
for the pseudospin–1/2 fermion wave functions, the following
Ans̈atzefor eigenstates of the HamiltonianH(2)

b [displayed in
Eq. (11)] in the three regionsχbx < −L/2, χbx > L/2, and
|x| < L/2 can be written down:

(

Ψ↑

Ψ↓

)∣

∣

∣

∣

χbx<−L
2

=

(

1
0

)

e
ix

χbE

h̄vb , (39a)

(

Ψ↑

Ψ↓

)∣

∣

∣

∣

χbx> L
2

=

(

t↑
0

)

e
ix

χbE

h̄vb +

(

0
t↓

)

e
ix

χbE

h̄vb ,(39b)

(

Ψ↑

Ψ↓

)∣

∣

∣

∣

|x|<L
2

= a

(

d+

d−

)

eixκ+ + b

(

−d∗−
d∗+

)

eixκ− ,(39c)

with the abbreviations

d± = ±
√

√

1 + ζ2 ± ζ e∓iχbx
∆

2ℓ2 , (39d)

κ± = χb
E ± t̃m1m2

√

1 + ζ2

h̄vb
. (39e)

The parameterζ = h̄vb∆/(2t̃m1m2
ℓ2) measures the deviation

from perfect energy and momentum conservation for tunnel-
ing pseudofermions. Requiring continuity of the wave func-
tion atx = ±L/2 yields a system of linear equations that we
can use to find expressions for the transmission coefficients
t↑ andt↓. Note that, due to chirality, continuity of the wave
function is sufficient to ensure current conservation. Ast↑ and
t↓ turn out to be independent of energyE, the tunneling cur-
rent is proportional to the density difference of the pseudospin
components. Its explicit expression is

I
(2)
J = − |t↓|2

√
2 vb ¯̺b sgn(νm1

− νm2
) , (40a)

with the transmission probability found from the above calcu-
lation as

|t↓|2 ≡ T (L) =
sin2

[

πL
Lt

√

1 + ζ2
]

1 + ζ2
. (40b)

HereLt = πh̄vb/t̃m1m2
is a length scale set by the effective

tunneling strength. From Eq. (36), we find the expression for
the current through the line junction as a function of the exter-
nally applied voltage

I
(2)
J =

χ1

2πh̄

T (L)

1 +
νm1

+νm2

2νm1
νm2

T (L)
(µ1 − µ3) . (41)

With Eq. (41), we have the full solution of the transport prob-
lem for line junctions with effective filling factor̃ν = 1/2. A
linear I–V characteristic is obtained, with a conductance os-
cillating as a function of junction lengthL and magnetic field
(through dependence on the parameterζ). Its maximum value,
reached forT (L) → 1 and given by

Gmax
J =

e2

2πh̄
min {νm1

, νm2
} , (42)

is smaller than that of an adiabatic point contact between chi-
ral fractional edge channels considered in Ref. [50], as should
be expected.

B. Caseν̃ = 1/4: Conductance oscillations as a function of
transport voltage

Refermionization yields an expression for the tunneling
current in terms of the fictitious Dirac fermionψb,

I
(4)
J = χ1

vt

2

∫ L
2

−L
2

dx
{

ψ†
b∂xψ

†
b − ψb∂xψb

}

, (43)

or the Majorana fermions that diagonalize the slow–mode
Hamiltonian when∆ = 0:

I
(4)
J =

vt

2

∫ L
2

−L
2

dx {ξ+(−iχ1∂x)ξ− + ξ−(−iχ1∂x)ξ+} .

(44)
In close analogy with the chiral–tunneling problem encoun-
tered forν̃ = 1/2 and discussed in Sec. IV A above, we solve
the transport problem through the line junction by consider-
ing the scattering of Dirac fermionsψb in terms of the Majo-
rana normal modes. As in the Landauer–Büttiker formalism
for transport,48,49 incoming scattering states are postulated for
χbx < −L/2, given in terms of a Majorana spinor notation as

(

ξ+
ξ−

)
∣

∣

∣

∣

χbx<−L
2

=

(

1
iχb

)

e
ix(

χbE

h̄vb
− ∆

ℓ2
)

. (45)

Outgoing scattering states exist forχbx > L/2 and are super-
positions of a Dirac–fermion stateψb and a Dirac ‘hole’ state
ψ†

b:54
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(

ξ+
ξ−

)∣

∣

∣

∣

χbx> L
2

= t−

(

1
iχb

)

e
ix(

χbE

h̄vb
− ∆

ℓ2
)
+ t+

(

1
−iχb

)

e
ix(

χbE

h̄vb
+ ∆

ℓ2
)

. (46)

In the line–junction region, a superposition of the two eigenstates with energy eigenvalueE is realized:
(

ξ+
ξ−

)
∣

∣

∣

∣

|x|< L
2

= a

(

ck+

iχbsk+

)

eik+x + b

(

iχbsk−

ck−

)

eik−x . (47)

Their respective wave vectors are solutions ofEk±,± = E. Requiring continuity of the Majorana–spinor wave functions at
the line–junction interfacesx = ±L/2, which simultaneously ensures current conservation for the chiral–fermion problem
considered here, yields expressions for the transmission amplitudest±. In contrast to the casẽν = 1/2, the latter are energy
dependent. The transport current through the line junctionis given by

I
(4)
J =

χ1χb

2πh̄

∫ 2πh̄vb ¯̺b

0

dE |t+(E)|2 , (48)

hence we only need the general expression for|t+|2, which is found to be

|t+|2 = 2

(
√

1 + r2k+
− |rk+

|
)(

√

1 + r2k−
+ |rk−

|
)

1 + |rk+
||rk−

| +
√

1 + r2k+

√

1 + r2k−

sin2

[

1

2
(k+ − k−)L

]

. (49)

Note that the energy dependence of|t+|2 is implicit through
the dependence ofk± onE.

Solving Eq. (48) in conjunction with Eq. (36) yieldsI(4)
J as

a function of the externally applied voltageV = (µ1 − µ3)/e
and, hence, solves the transport problem through line junc-

0
0.2

0.4
0.6

0.8
1

Veff 0

30

60
90

120
150

Leff

0

0.3

0.6

g

0
0.2

0.4
0.6

0.8Veff

FIG. 2: Illustration of conductance oscillations. The dimensionless
differential tunneling conductanceg = 2πh̄

e2
dI

dV
is plotted as a func-

tion of Veff = ǫℓ

e
V andLeff = L

ℓ
, according to Eq. (50). Our choice

of units is motivated by the fact that magnetic lengthℓ and Coulomb
energye2/(ǫℓ) are characteristic scales in the fractional–quantum–
Hall regime. We assumede2vt/(ǫh̄v+v−) = 0.1 here but results for
different values can be obtained by linear scaling ofVeff or Leff.

tions having effective filling factor̃ν = 1/4. While such a
solution is accessible, even if only numerically, in the gen-
eral case, it is instructive to look at the special situationwhere
∆ = 0 and tunneling is weak. In this limit, we find for the
differential tunneling conductance the expression

e
dI

(4)
J

dV
=

e2

2πh̄

1

4

{

1 − cos

(

vtL

h̄v+v−
eV

)}

, (50)

which is valid as long as the expression in curly brackets is
smaller than unity. It exhibits an oscillatory dependence on
both junction length and applied voltage, which we illustrate
in Fig. 2 for a realistic set of parameters. The conductance
oscillations as a function ofV are a direct consequence of
the velocity splitting of the Majorana pseudofermions that
are the quasiparticle excitations in the line junction. This
signature behavior for̃ν = 1/4 will survive in the gen-
eral case as long as the junction is narrow enough such that
∆ < vtℓ

2|eV |/(h̄v2
b). Its observation in real samples would

provide strong evidence for the reality of the Majorana quasi-
particles in QH line junctions, showing yet another exam-
ple of how strongly–correlated condensed–matter systems ex-
hibit features of relativistic quantum–field theories typically
encountered in the realm of elementary–particle physics.

V. SUMMARY AND CONCLUSIONS

In this article, we provide a detailed theory of trans-
port through line junctions formed between tunnel–coupled
counter–propagating fractional–quantum–Hall edge channels
having different filling factors of the Laughlin type. Strong
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correlations within the tunneling region result in a nontrivial
spectrum of elementary excitations when the effective filling
factorν̃ of the junction is equal to1/2 or 1/4. An example for
the former (latter) case is a line junction between edge chan-
nels having filling factor 1 and1/3 (1/5). Using bosonization
and refermionization techniques, we map the original line–
junction problem to a model of tunneling between noninter-
acting chiral spin–1/2 Dirac pseudofermions (forν̃ = 1/2)
or a chiral spinless p–wave superconductor with Majorana–
pseudofermion quasiparticles (forν̃ = 1/4). In both situa-
tions, we find the excitation spectrum and eigenstates of the
line junction exactly. Together with an exact general relation,
given by Eq. (36), between the externally applied chemical–
potential differenceµ1−µ3 and intrinsic line–junction quanti-
ties, such as the total currentIJ, we can solve for the transport
I–V characteristics. The full solution for the caseν̃ = 1/2
is given by Eq. (41), together with Eq. (40b). It exhibits os-
cillations as a function of junction length that are similarto
those found in tunnel–coupled quantum wires.45,46,47To cal-
culate transport through junctions having̃ν = 1/4 in the
most general case requires simultaneous numerical solution of
Eqs. (48) and (36) for specific parameters realized in experi-
ment. For the special situation of a narrow junction, analytical
results are available. We give the differential tunneling con-

ductance in Eq. (50), which shows oscillations as a functionof
transport voltage. This behavior is the signature of a nontriv-
ial velocity splitting similar to spin–charge separation in inter-
acting quasi–1D systems. Its observation would provide evi-
dence of yet another mechanism for electron fractionalization
in strongly correlated electron systems. Experiments in sam-
ples of 90–degree bent21,24 or laterally separated22 2D elec-
tron systems, suitably modified to reach the fractional quan-
tum Hall regime, could be used to test our predictions.
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23 A. Würtz, R. Wildfeuer, A. Lorke, E. V. Deviatov, and V. T. Dol-

gopolov, Phys. Rev. B65, 075303 (2002).
24 M. Grayson, D. Schuh, M. Bichler, G. Abstreiter, L. Hoeppel,J.

Smet and K. von Klitzing, cond-mat/0308557.
25 A. Mitra and S. M. Girvin, Phys. Rev. B64, 041309 (2001).
26 M. Kollar and S. Sachdev, Phys. Rev. B65, 121304(R) (2002).
27 E.-A. Kim and E. Fradkin, Phys. Rev. B67, 045317 (2003).
28 S. R. Renn and D. P. Arovas, Phys. Rev. B51, 16832 (1995).
29 C. L. Kane and M. P. A. Fisher, Phys. Rev. B56, 15231 (1997).
30 J. D. Naud, L. P. Pryadko, and S. L. Sondhi, Nucl. Phys. B565,

572 (2000).
31 J. D. Naud, L. P. Pryadko, and S. L. Sondhi, Phys. Rev. B63,

115301 (2001).
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