271 research outputs found

    The mysterious optical afterglow spectrum of GRB140506A at z=0.889

    Get PDF
    Context. Gamma-ray burst (GRBs) afterglows probe sightlines to star-forming regions in distant star-forming galaxies. Here we present a study of the peculiar afterglow spectrum of the z = 0.889 Swift GRB 140506A. Aims. Our aim is to understand the origin of the very unusual properties of the absorption along the line-of-sight. Methods. We analyse spectroscopic observations obtained with the X-shooter spectrograph mounted on the ESO/VLT at two epochs 8.8 h and 33 h after the burst as well as imaging from the GROND instrument. We also present imaging and spectroscopy of the host galaxy obtained with the Magellan telescope. Results. The underlying afterglow appears to be a typical afterglow of a long-duration GRB. However, the material along the line-of- sight has imprinted very unusual features on the spectrum. Firstly, there is a very broad and strong flux drop below 8000 AA (4000 AA in the rest frame), which seems to be variable between the two spectroscopic epochs. We can reproduce the flux-drops both as a giant 2175 AA extinction bump and as an effect of multiple scattering on dust grains in a dense environment. Secondly, we detect absorption lines from excited H i and He i. We also detect molecular absorption from CH+ . Conclusions. We interpret the unusual properties of these spectra as reflecting the presence of three distinct regions along the line-of-sight: the excited He i absorption originates from an H ii-region, whereas the Balmer absorption must originate from an associated photodissociation region. The strong metal line and molecular absorption and the dust extinction must originate from a third, cooler region along the line-of-sight. The presence of (at least) three separate regions is reflected in the fact that the different absorption components have different velocities relative to the systemic redshift of the host galaxy.Comment: 8 pages, 4 figures. Accepted for publications in A&

    The optical identifcation of events with poorly defined locations: The case of the Fermi GBM GRB140801A

    Full text link
    We report the early discovery of the optical afterglow of gamma-ray burst (GRB) 140801A in the 137 deg2^2 3-σ\sigma error-box of the Fermi Gamma-ray Burst Monitor (GBM). MASTER is the only observatory that automatically react to all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart was discovered solely from its GBM localization. The optical afterglow of GRB 140801A was found by MASTER Global Robotic Net 53 sec after receiving the alert, making it the fastest optical detection of a GRB from a GBM error-box. Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m BTA of SAO RAS reveals a redshift of z=1.32z=1.32. We performed optical and near-infrared photometry of GRB 140801A using different telescopes with apertures ranging from 0.4-m to 10.4-m. GRB 140801A is a typical burst in many ways. The rest-frame bolometric isotropic energy release and peak energy of the burst is Eiso=5.540.24+0.26×1052E_\mathrm{iso} = 5.54_{-0.24}^{+0.26} \times 10^{52} erg and Ep,rest280E_\mathrm{p, rest}\simeq280 keV, respectively, which is consistent with the Amati relation. The absence of a jet break in the optical light curve provides a lower limit on the half-opening angle of the jet θ=6.1\theta=6.1 deg. The observed EpeakE_\mathrm{peak} is consistent with the limit derived from the Ghirlanda relation. The joint Fermi GBM and Konus-Wind analysis shows that GRB 140801A could belong to the class of intermediate duration. The rapid detection of the optical counterpart of GRB 140801A is especially important regarding the upcoming experiments with large coordinate error-box areas.Comment: in press MNRAS, 201

    A Modifier Screen for Bazooka/PAR-3 Interacting Genes in the Drosophila Embryo Epithelium

    Get PDF
    The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka (Baz; PAR-3) localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial structure in the Drosophila embryo.The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3 deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal, transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not detected.Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is the first report of a link to baz or the regulation of epithelial structure

    A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst

    Get PDF
    A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested1,2,3. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts3,4 or in the tidal disruptions of a star3. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts5,6,7, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae8,9, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae20,20a

    Role of Kinesin Heavy Chain in Crumbs Localization along the Rhabdomere Elongation in Drosophila Photoreceptor

    Get PDF
    BACKGROUND:Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS:Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. CONCLUSIONS/SIGNIFICANCE:In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development

    Rho GTPase function in flies: insights from a developmental and organismal perspective.

    Get PDF
    Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development

    Organization of multiprotein complexes at cell–cell junctions

    Get PDF
    The formation of stable cell–cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell–cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell–cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell–cell contact formation and maintenance

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    Constraints on the cosmic expansion history from GWTC-3

    Get PDF
    We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z)H(z), including its current value, the Hubble constant H0H_0. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z)H(z). The source mass distribution displays a peak around 34M34\, {\rm M_\odot}, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a H(z)H(z) measurement, yielding H0=687+12kms1Mpc1H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}} (68%68\% credible interval) when combined with the H0H_0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0H_0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8kms1Mpc1H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}} with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0H_0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0H_0) is the well-localized event GW190814

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    corecore