56 research outputs found

    Fysisk arbeidsmiljø : delrapport

    Get PDF

    Yrke og kreft i Norge

    Get PDF

    CCDC26, CDKN2BAS, RTEL1 and TERT Polymorphisms in pediatric brain tumor susceptibility

    Get PDF
    The role of genetic polymorphisms in pediatric brain tumor (PBT) etiology is poorly understood. In this study, we tested the hypothesis that single nucleotide polymorphisms identified by genome-wide association studies on adult glioma are also associated with PBT ris

    CCDC26, CDKN2BAS, RTEL1 and TERT Polymorphisms in pediatric brain tumor susceptibility

    Get PDF
    The role of genetic polymorphisms in pediatric brain tumor (PBT) etiology is poorly understood. In this study, we tested the hypothesis that single nucleotide polymorphisms identified by genome-wide association studies on adult glioma are also associated with PBT ris

    A multinational case-control study on childhood brain tumours, anthropogenic factors, birth characteristics and prenatal exposures: A validation of interview data.

    Get PDF
    Little is known about the aetiology of childhood brain tumours. We investigated anthropometric factors (birth weight, length, maternal age), birth characteristics (e.g. vacuum extraction, preterm delivery, birth order) and exposures during pregnancy (e.g. maternal: smoking, working, dietary supplement intake) in relation to risk of brain tumour diagnosis among 7-19 year olds. The multinational case-control study in Denmark, Sweden, Norway and Switzerland (CEFALO) included interviews with 352 (participation rate=83.2%) eligible cases and 646 (71.1%) population-based controls. Interview data were complemented with data from birth registries and validated by assessing agreement (Cohen's Kappa). We used conditional logistic regression models matched on age, sex and geographical region (adjusted for maternal age and parental education) to explore associations between birth factors and childhood brain tumour risk. Agreement between interview and birth registry data ranged from moderate (Kappa=0.54; worked during pregnancy) to almost perfect (Kappa=0.98; birth weight). Neither anthropogenic factors nor birth characteristics were associated with childhood brain tumour risk. Maternal vitamin intake during pregnancy was indicative of a protective effect (OR 0.75, 95%-CI: 0.56-1.01). No association was seen for maternal smoking during pregnancy or working during pregnancy. We found little evidence that the considered birth factors were related to brain tumour risk among children and adolescents

    Mobile Phone Use and Brain Tumors in Children and Adolescents: A Multicenter Case-Control Study

    Get PDF
    Background It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents. Methods CEFALO is a multicenter case-control study conducted in Denmark, Sweden, Norway, and Switzerland that includes all children and adolescents aged 7-19 years who were diagnosed with a brain tumor between 2004 and 2008. We conducted interviews, in person, with 352 case patients (participation rate: 83%) and 646 control subjects (participation rate: 71%) and their parents. Control subjects were randomly selected from population registries and matched by age, sex, and geographical region. We asked about mobile phone use and included mobile phone operator records when available. Odds ratios (ORs) for brain tumor risk and 95% confidence intervals (CIs) were calculated using conditional logistic regression models. Results Regular users of mobile phones were not statistically significantly more likely to have been diagnosed with brain tumors compared with nonusers (OR = 1.36; 95% CI = 0.92 to 2.02). Children who started to use mobile phones at least 5 years ago were not at increased risk compared with those who had never regularly used mobile phones (OR = 1.26, 95% CI = 0.70 to 2.28). In a subset of study participants for whom operator recorded data were available, brain tumor risk was related to the time elapsed since the mobile phone subscription was started but not to amount of use. No increased risk of brain tumors was observed for brain areas receiving the highest amount of exposure. Conclusion The absence of an exposure-response relationship either in terms of the amount of mobile phone use or by localization of the brain tumor argues against a causal associatio

    Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility.

    Get PDF
    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk.The study is based on the largest series of PBT cases to date. Saliva DNA from 245 cases and 489 controls, aged 7-19 years at diagnosis/reference date, was genotyped for 68 SNPs. Data were analyzed using unconditional logistic regression.The results showed EGFRrs730437 and EGFRrs11506105 may decrease susceptibility to PBTs, whereas ERCC1rs3212986 may increase risk of these tumors. Moreover, stratified analyses indicated CHAF1Ars243341, CHAF1Ars2992, and XRCC1rs25487 were associated with a decreased risk of astrocytoma subtype. Furthermore, an increased risk of non-astrocytoma subtype associated with EGFRrs9642393, EME1rs12450550, ATMrs170548, and GLTSCRrs1035938 as well as a decreased risk of this subtype associated with XRCC4rs7721416 and XRCC4rs2662242 were detected.This study indicates SNPs in EGFR, ERCC1, CHAF1A, XRCC1, EME1, ATM, GLTSCR1, and XRCC4 may be associated with the risk of PBTs. Therefore, cell cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways

    The Intracranial Distribution of Gliomas in Relation to Exposure From Mobile Phones: Analyses From the INTERPHONE Study

    Get PDF
    When investigating the association between brain tumors and use of mobile telephones, accurate data on tumor position are essential, due to the highly localized absorption of energy in the human brain from the radio-frequency fields emitted. We used a point process model to investigate this association using information that included tumor localization data from the INTERPHONE Study (Australia, Canada, Denmark, Finland, France, Germany, Israel, Italy, Japan, New Zealand, Norway, Sweden, and the United Kingdom). Our main analysis included 792 regular mobile phone users diagnosed with a glioma between 2000 and 2004. Similar to earlier results, we found a statistically significant association between the intracranial distribution of gliomas and the self reported location of the phone. When we accounted for the preferred side of the head not being exclusively used for all mobile phone calls, the results were similar. The association was independent of the cumulative call time and cumulative number of calls. However, our model used reported side of mobile phone use, which is potentially influenced by recall bias. The point process method provides an alternative to previously used epidemiologic research designs when one is including localization in the investigation of brain tumors and mobile phone use

    Diagnostic radiological examinations and risk of intracranial tumours in adults-findings from the Interphone Study.

    Get PDF
    Background Exposure to high doses of ionizing radiation is among the few well-established brain tumour risk factors. We used data from the Interphone study to evaluate the effects of exposure to low-dose radiation from diagnostic radiological examinations on glioma, meningioma and acoustic neuroma risk. Methods Brain tumour cases (2644 gliomas, 2236 meningiomas, 1083 neuromas) diagnosed in 2000-02 were identified through hospitals in 13 countries, and 6068 controls (population-based controls in most centres) were included in the analysis. Participation across all centres was 64% for glioma cases, 78% for meningioma cases, 82% for acoustic neuroma cases and 53% for controls. Information on previous diagnostic radiological examinations was obtained by interviews, including the frequency, timing and indication for the examinations. Typical brain doses per type of examination were estimated based on the literature. Examinations within the 5 years before the index date were excluded from the dose estimation. Adjusted odds ratios were estimated using conditional logistic regression. Results No materially or consistently increased odds ratios for glioma, meningioma or acoustic neuroma were found for any specific type of examination, including computed tomography of the head and cerebral angiography. The only indication of an elevated risk was an increasing trend in risk of meningioma with the number of isotope scans, but no such trends for other examinations were observed. No gradient was found in risk with estimated brain dose. Age at exposure did not substantially modify the findings. Sensitivity analyses gave results consistent with the main analysis. Conclusions There was no consistent evidence for increased risks of brain tumours with X-ray examinations, although error from selection and recall bias cannot be completely excluded. A cautious interpretation is warranted for the observed association between isotope scans and meningioma

    Proximity to overhead power lines and childhood leukaemia: an international pooled analysis

    Get PDF
    © 2018, Cancer Research UK. Background: Although studies have consistently found an association between childhood leukaemia risk and magnetic fields, the associations between childhood leukaemia and distance to overhead power lines have been inconsistent. We pooled data from multiple studies to assess the association with distance and evaluate whether it is due to magnetic fields or other factors associated with distance from lines. Methods: We present a pooled analysis combining individual-level data (29,049 cases and 68,231 controls) from 11 record-based studies. Results: There was no material association between childhood leukaemia and distance to nearest overhead power line of any voltage. Among children living < 50 m from 200 + kV power lines, the adjusted odds ratio for childhood leukaemia was 1.33 (95% CI: 0.92–1.93). The odds ratio was higher among children diagnosed before age 5 years. There was no association with calculated magnetic fields. Odds ratios remained unchanged with adjustment for potential confounders. Conclusions: In this first comprehensive pooled analysis of childhood leukaemia and distance to power lines, we found a small and imprecise risk for residences < 50 m of 200 + kV lines that was not explained by high magnetic fields. Reasons for the increased risk, found in this and many other studies, remains to be elucidated
    corecore